scholarly journals Comparison of FDA-Approved Electrical Neuromodulation Techniques for Focal Neuropathic Pain: A Narrative Review of DRG, HF10, and Burst Neuromodulation

2021 ◽  
pp. E407-E423

BACKGROUND: Evidence suggests that dorsal root ganglion stimulation (DRGS) is a more effective treatment for focal neuropathic pain (FNP) compared with tonic, paresthesia-based dorsal column spinal cord stimulation (SCS). However, new advancements in waveforms for dorsal column SCS have not been thoroughly studied or compared with DRGS for the treatment of FNP. OBJECTIVES: The purpose of this review was to examine the evidence for these novel technologies; to highlight the lack of high-quality evidence for the use of neuromodulation to treat FNP syndromes other than complex regional pain syndrome I or II of the lower extremity; to emphasize the absence of comparison studies between DRGS, burst SCS, and high-frequency SCS; and to underscore that consideration of all neuromodulation systems is more patient-centric than a one-size-fits-all approach. STUDY DESIGN: This is a review article summarizing case reports, case series, retrospective studies, prospective studies, and review articles. SETTING: The University of Miami, Florida. METHODS: A literature search was conducted from February to March 2020 using the PubMed and EMBASE databases and keywords related to DRGS, burst SCS, HF10 (high-frequency of 10 kHz), and FNP syndromes. All English-based literature from 2010 reporting clinical data in human patients were included. RESULTS: Data for the treatment of FNP using burst SCS and HF10 SCS are limited (n = 11 for burst SCS and n = 11 for HF10 SCS). The majority of these studies were small, single-center, nonrandomized, noncontrolled, retrospective case series and case reports with short follow-up duration. To date, there are only 2 randomized controlled trials for burst and HF10 for the treatment of FNP. LIMITATIONS: No studies were available comparing DRGS to HF10 or burst for the treatment of FNP. Data for the treatment of FNP using HF10 and burst stimulation were limited to a small sample size reported in mostly case reports and case series. CONCLUSIONS: FNP is a complex disease, and familiarity with all available systems allows the greatest chance of success. KEY WORDS: Dorsal root ganglion, high frequency, burst, spinal cord stimulation, neuromodulation, focal neuropathic pain

2019 ◽  
Vol 6 (22;6) ◽  
pp. 601-611
Author(s):  
Adnan Al-Kaisy

Background: The recent interest in targeting the dorsal root ganglion (DRG) has led to the development of new techniques of electrode placement. In this article, we describe a new “Transgrade” approach to the DRG, accessing the contralateral interlaminar space and steering the lead out the opposite foramen. Objectives: The purpose of this study was to evaluate the Transgrade technique to the DRG in the management of focal neuropathic pain, predominately complex regional pain syndrome in terms of efficacy and safety. Study Design: A retrospective, observational review of all patients selected for DRG stimulation using the Transgrade technique to the DRG. Setting: Pain Management and Neuromodulation Centre, Guys and St. Thomas NHS Foundation Trust, London, United Kingdom. Methods: Data were taken from a hospital password-protected database. All patients were contacted by telephone for Numeric Rating Scale (NRS-11) score, Patient Global Impression of Change (PGIC) score, and complications. A patient responder was defined as having a PGIC score of 6 or 7, and a 2-point reduction from baseline NRS-11. Results: A total of 39 patients (46% women) with a mean age of 46 years (± 2) underwent a trial of DRG stimulation that resulted in an implantation rate of 82% (32 of 39). The responder rates, according to NRS-11 and PGIC results, were 87% (28 of 32) at 6 weeks and 66% (21 of 32) at a mean of 18 months (± 1.8) follow-up. Pocket pain was the most common complication, occurring in 7 of 32 (22%) patients, and the lead migration rate was 3 out of 57 leads placed (5.2%). A burst protocol was the favored method of stimulation in the majority of patients, 25 of 32 (78%). Limitations: Retrospective nature of design, small sample size. Conclusions: The Transgrade technique of placing DRG leads offers an alternative method that is safe and effective. New methods of stimulation to the DRG offer more choice and potentially better efficacy for patients with chronic neuropathic pain.


2014 ◽  
Vol 18 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Liong Liem ◽  
Marc Russo ◽  
Frank J.P.M. Huygen ◽  
Jean-Pierre Van Buyten ◽  
Iris Smet ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 644
Author(s):  
Vinicius Tieppo Francio ◽  
Keith F. Polston ◽  
Micheal T. Murphy ◽  
Jonathan M. Hagedorn ◽  
Dawood Sayed

Since the inception of spinal cord stimulation (SCS) in 1967, the technology has evolved dramatically with important advancements in waveforms and frequencies. One such advancement is Nevro’s Senza® SCS System for HF10, which received Food and Drug and Administration (FDA) approval in 2015. Low-frequency SCS works by activating large-diameter Aβ fibers in the lateral discriminatory pathway (pain location, intensity, quality) at the dorsal column (DC), creating paresthesia-based stimulation at lower-frequencies (30–120 Hz), high-amplitude (3.5–8.5 mA), and longer-duration/pulse-width (100–500 μs). In contrast, high-frequency 10 kHz SCS works with a proposed different mechanism of action that is paresthesia-free with programming at a frequency of 10,000 Hz, low amplitude (1–5 mA), and short-duration/pulse-width (30 μS). This stimulation pattern selectively activates inhibitory interneurons in the dorsal horn (DH) at low stimulation intensities, which do not activate the dorsal column fibers. This ostensibly leads to suppression of hyperexcitable wide dynamic range neurons (WDR), which are sensitized and hyperactive in chronic pain states. It has also been reported to act on the medial pathway (drives attention and pain perception), in addition to the lateral pathways. Other theories include a reversible depolarization blockade, desynchronization of neural signals, membrane integration, glial–neuronal interaction, and induced temporal summation. The body of clinical evidence regarding 10 kHz SCS treatment for chronic back pain and neuropathic pain continues to grow. There is high-quality evidence supporting its use in patients with persistent back and radicular pain, particularly after spinal surgery. High-frequency 10 kHz SCS studies have demonstrated robust statistically and clinically significant superiority in pain control, compared to paresthesia-based SCS, supported by level I clinical evidence. Yet, as the field continues to grow with the technological advancements of multiple waveforms and programming stimulation algorithms, we encourage further research to focus on the ability to modulate pain with precision and efficacy, as the field of neuromodulation continues to adapt to the modern healthcare era.


2018 ◽  
Vol 25 (3) ◽  
pp. 367-374 ◽  
Author(s):  
Eva Koetsier ◽  
Glenn Franken ◽  
Jacques Debets ◽  
Sander M. J. Kuijk ◽  
Roberto S. G. M. Perez ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chiaki Yamada ◽  
Aiko Maeda ◽  
Katsuyuki Matsushita ◽  
Shoko Nakayama ◽  
Kazuhiro Shirozu ◽  
...  

Abstract Background Patients with spinal cord injury (SCI) frequently complain of intractable pain that is resistant to conservative treatments. Here, we report the successful application of 1-kHz high-frequency spinal cord stimulation (SCS) in a patient with refractory neuropathic pain secondary to SCI. Case presentation A 69-year-old male diagnosed with SCI (C4 American Spinal Injury Association Impairment Scale A) presented with severe at-level bilateral upper extremity neuropathic pain. Temporary improvement in his symptoms with a nerve block implied peripheral component involvement. The patient received SCS, and though the tip of the leads could not reach the cervical vertebrae, a 1-kHz frequency stimulus relieved the intractable pain. Conclusions SCI-related symptoms may include peripheral components; SCS may have a considerable effect on intractable pain. Even when the SCS electrode lead cannot be positioned in the target area, 1-kHz high-frequency SCS may still produce positive effects.


Sign in / Sign up

Export Citation Format

Share Document