scholarly journals THE STUDY OF TEMPORAL CHANGES ON LAND COVER/LAND USE PREVAILING IN BAGHDAD GOVERNORATE USING RS & GIS

2016 ◽  
Vol 47 (3) ◽  
Author(s):  
Ali & Muhaimeed

This study was carried out in order to identify and mapping the temporal changes for land covers in Baghdad province using Remote Sensing and GIS. Three images were used of land sate taken in 1976, 2000 and 2014 the study area. Suppervised classification and SAVI Index were used to identify land cover classes dominated in the study area. The results of supper classification indicated the presence of five land cover classes including water bodies, bare land, urban, low dense vegetation, and dense vegetation classes. There were four classes of land cover when was used SAVI index: water, no vegetation (bare land and urban), low dense vegetation, and dense vegetation. The results showed that Remote Sensing is a very active and useful tool that can be used to detect land core types. The results showed a decline in class of water bodies from 2.8% to 1.5% for 1976 to 1990 while in 2014 increased to 2.1%. class Urban areas increased continuously with time and accounted for 17.6% , 23.5% and 28.2 % for years of study, indicating  the existence of the phenomenon of urban encroachment. Bare land areas accounted for 29.3% , 26.8% and 33.5% of stady years, respectively. The class of low dense vegetation decreased from 44.8% to 31.7% and 29.4% for 1976, 1990 and 2014 respectively, while the class-Dense vegetation increased at 1976-1990 from 5.5% to 16.4% and  decreased in 2014 to 6.8%. The SAVI had a role in the detection of agriculture and gave results same to the results of super classification. Results indicated that urban land and salinization process can be consider as the most phenomenon which negatively affected on agriculture area.

Author(s):  
B. Varpe Shriniwas D. Payal Sandip

In the present study, an effort has been made to study in detail of Land Use/Land Cover Mapping for Sambar watershed by using Remote Sensing and GIS technique was carried out during the year of 2020-2021 in Parbhani district. In this research the Remote Sensing and Geographical Information system technique was used for identifying the land use/land cover classes with the help of ArcGIS 10.8 software. The Sambar watershed is located in 19º35ʹ78.78˝ N and 76º87ʹ88.44˝ E in the Parbhani district of Marathwada region in Maharashtra. It is covered a total area 97.01 km2. The land use/land cover map and its classes were identified by the Supervised Classification Method in ArcGIS 10.8 software by using the Landsat 8 satellite image. Total six classes are identified namely as Agricultural area, Forest area, Urban area, Barren land, Water bodies and Fallow land. The Agricultural lands are well distributed throughout the watershed area and it covers 4135 ha. (43 per cent). Forest occupies 502 ha area and sharing about 5 per cent of the total land use land cover of the study area. The Urban land occupies 390 ha. area (4 per cent) and there was a rapid expansion of settlement area. Barren land occupies 3392 ha. area (35 per cent). A water bodies occupy 630 ha. area (6 per cent) and the Fallow land occupies 650 ha (7 per cent) but well-developed dendritic drainage pattern and good water availability is in the Sambar watershed.


Author(s):  
Swapnali Barman ◽  
Jaivir Tyagi ◽  
Waikhom Rahul Singh

Using remote sensing and GIS technique, we analyse the change detection of different land use/land cover (LULC) types that has taken place in Puthimari river basin during a two-decade period from 1999 to 2019. Supervised classification method with maximum likelihood algorithm have been applied to prepare the LULC maps. The LULC change detection has been performed employing a post-classification detection method. Puthimari is a north bank sub-catchment of River Brahmaputra, the northern part of which falls in Bhutan and the rest falls in the Assam state of India. The primary LULC types of the basin are, dense vegetation which is predominant in the upper catchment, crop land and rural settlement. Thus, five different classes have been considered for the analysis, viz., dense vegetation, water bodies, silted water, cropland and rural settlement. The results showed that the rural settlement and water bodies in the basin increased by 42.70% and 30.31% from 1999 to 2019. However, dense vegetation, silted water and cropland decreased by 9.24%, 27.47% and 28.10% during these two decades.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Dereje Gebrie Habte ◽  
Satishkumar Belliethathan ◽  
Tenalem Ayenew

AbstractEvaluation of land use/land cover (LULC) status of watersheds is vital to environmental management. This study was carried out in Jewha watershed, which is found in the upper Awash River basin of central Ethiopia. The total catchment area is 502 km2. All climatic zones of Ethiopia, including lowland arid (‘Kola’), midland semi-arid (‘Woinadega’), humid highland (Dega) and afro alpine (‘Wurch’) can be found in the watershed. The study focused on LULC classification and change detection using GIS and remote sensing techniques by analyzing satellite images. The data preprocessing and post-process was done using multi-temporal spectral satellite data. The images were used to evaluate the temporal trends of the LULC class by considering the years 1984, 1995, 2005 and 2015. Accuracy assessment and change detection of the classification were undertaken by accounting these four years images. The land use types in the study area were categorized into six classes: natural forest, plantation forest, cultivated land, shrub land, grass land and bare land. The result shows the cover classes which has high environmental role such as forest and shrub has decreased dramatically through time with cultivated land increasing during the same period in the watershed. The forest cover in 1984 was about 6.5% of the total catchment area, and it had decreased to 4.2% in 2015. In contrast, cultivated land increased from 38.7% in 1984 to 51% in 2015. Shrub land decreased from 28 to 18% in the same period. Bare land increased due to high gully formation in the catchment. In 1984, it was 1.8% which turned to 0.6% in 1995 then increased in 2015 to 2.7%. Plantation forest was not detected in 1984. In 1995, it covers 1.5% which turned to be the same in 2015. The study clearly demonstrated that there are significant changes of land use and land cover in the catchment. The findings will allow making informed decision which will allow better land use management and environmental conservation interventions.


Author(s):  
O. S. Olokeogun ◽  
K. Iyiola ◽  
O. F. Iyiola

Mapping of LULC and change detection using remote sensing and GIS techniques is a cost effective method of obtaining a clear understanding of the land cover alteration processes due to land use change and their consequences. This research focused on assessing landscape transformation in Shasha Forest Reserve, over an 18 year period. LANDSAT Satellite imageries (of 30 m resolution) covering the area at two epochs were characterized into five classes (Water Body, Forest Reserve, Built up Area, Vegetation, and Farmland) and classification performs with maximum likelihood algorithm, which resulted in the classes of each land use. <br><br> The result of the comparison of the two classified images showed that vegetation (degraded forest) has increased by 30.96 %, farmland cover increased by 22.82 % and built up area by 3.09 %. Forest reserve however, has decreased significantly by 46.12 % during the period. <br><br> This research highlights the increasing rate of modification of forest ecosystem by anthropogebic activities and the need to apprehend the situation to ensure sustainable forest management.


Sign in / Sign up

Export Citation Format

Share Document