PRODUCTION OF LIGNOCELLULOSES FROM ASPERGILLUS NIGER USING ARECA NUT SPADE AS BIOMASS..

2019 ◽  
pp. 1-3
Author(s):  
Madhuri B ◽  
Narasimha G ◽  
Balaji M*

Areca palm (ChrysalidoCarpus lutescenes) a widely used plant having feathery arching brands with 100 leaflets. All these plants produce much of waste in additions to greeny and nuts. This waste of spade is used for the production of various molecules that are used in industry and pharma sector. Fermentation techniques are used to generate economically important enzymes for industrial and pharmaceutical purposes. Cellulase enzyme degrades the cellulose in between β-1, 4 glucosidic link found in lignocellulosic complex which under physical treatment is slower to degrade. The present study of Aspergillus niger for cellulose production was carried in solid state (SS) and submerged (SM) fermentations for production of cellulase enzyme. Cellulase production in SSF after 72 h of fermentation was 8.02 and in SMF activity was 2.98 per ml of cultured broth at H 6 and temperature at 30°C. Both SMF and SSF were supplemented with lactose and lactobionic acid, which acted as cellulase P production inducers. The aim of the present work was to study the effect of Areca palm spade as substrate for Aspergillus niger and its cellulase production under SMF and SSF.

2019 ◽  
pp. 1-3
Author(s):  
Madhuri B ◽  
Narasimha G ◽  
Balaji M*

Areca palm (ChrysalidoCarpus lutescenes) a widely used plant having feathery arching brands with 100 leaflets. All these plants produce much of waste in additions to greeny and nuts. This waste of spade is used for the production of various molecules that are used in industry and pharma sector. Fermentation techniques are used to generate economically important enzymes for industrial and pharmaceutical purposes. Cellulase enzyme degrades the cellulose in between β-1, 4 glucosidic link found in lignocellulosic complex which under physical treatment is slower to degrade. The present study of Aspergillus niger for cellulose production was carried in solid state (SS) and submerged (SM) fermentations for production of cellulase enzyme. Cellulase production in SSF after 72 h of fermentation was 8.02 and in SMF activity was 2.98 per ml of cultured broth at H 6 and temperature at 30°C. Both SMF and SSF were supplemented with lactose and lactobionic acid, which acted as cellulase P production inducers. The aim of the present work was to study the effect of Areca palm spade as substrate for Aspergillus niger and its cellulase production under SMF and SSF.


2016 ◽  
Vol 29 (1) ◽  
pp. 222-233 ◽  
Author(s):  
TAMIRES CARVALHO DOS SANTOS ◽  
GEORGE ABREU FILHO ◽  
AILA RIANY DE BRITO ◽  
AURELIANO JOSÉ VIEIRA PIRES ◽  
RENATA CRISTINA FERREIRA BONOMO ◽  
...  

ABSTRACT: Prickly palm cactus husk was used as a solid-state fermentation support substrate for the production of cellulolytic enzymes using Aspergillus niger and Rhizopus sp. A Box-Behnken design was used to evaluate the effects of water activity, fermentation time and temperature on endoglucanase and total cellulase production. Response Surface Methodology showed that optimum conditions for endoglucanase production were achieved at after 70.35 h of fermentation at 29.56°C and a water activity of 0.875 for Aspergillus niger and after 68.12 h at 30.41°C for Rhizopus sp. Optimum conditions for total cellulase production were achieved after 74.27 h of fermentation at 31.22°C for Aspergillus niger and after 72.48 h and 27.86°C for Rhizopus sp. Water activity had a significant effect on Aspergillus niger endoglucanase production only. In industrial applications, enzymatic characterization is important for optimizing variables such as temperature and pH. In this study we showed that endoglucanase and total cellulase had a high level of thermostability and pH stability in all the enzymatic extracts. Enzymatic deactivation kinetic experiments indicated that the enzymes remained active after the freezing of the crude extract. Based on the results, bioconversion of cactus is an excellent alternative for the production of thermostable enzymes.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
C. K. Lee ◽  
I. Darah ◽  
C. O. Ibrahim

Novel design solid state bioreactor, FERMSOSTAT, had been evaluated in cellulase production studies using local isolate Aspergillus niger USM AI 1 grown on sugarcane bagasse and palm kernel cake at 1 : 1 (w/w) ratio. Under optimised SSF conditions of 0.5 kg substrate; 70% (w/w) moisture content; 30∘C; aeration at 4 L/h·g fermented substrate for 5 min and mixing at 0.5 rpm for 5 min, about 3.4 U/g of Filter paper activity (FPase) was obtained. At the same time, comparative studies of the enzymes production under the same SSF conditions indicated that FPase produced by A. niger USM AI 1 was about 35.3% higher compared to Trichoderma reesei. This shows that the performance of this newly designed SSF bioreactor is acceptable and potentially used as prototype for larger-scale bioreactor design.


Author(s):  
Chun Chang ◽  
Guizhuan Xu ◽  
Junfang Yang ◽  
Duo Wang

The cellulase production by Trichoderma viride was optimized using artificial intelligence-based techniques under solid state fermentation. In this study, a back propagation network was designed with Levenberg-Marquardt training algorithm, and the tangent sigmoid and pure linear functions were used as the transfer functions in the hidden and output layers of the ANN, respectively. An artificial neural network coupling genetic algorithms was used to optimize the process parameters, which include the mass ratio of wheat straw to wheat bran, moisture content and fermentation time. The ultimate process parameters of optimization were mass ration of wheat straw to wheat bran 2.9, moisture content 69.6 percent, and fermentation time 123.3h. Further test experiment showed that the final cellulase activity can reach to 11.62 U/g, which was the highest value among all the experimental results. This result indicates that the genetic algorithm based on a neural network model is a better optimization method for cellulase production in solid state fermentation. To improve the cellulase production, a mixed culture system of Trichoderma viride and Aspergillus niger was also developed. The cellulase activity increased by 7.40 percent with the addition of Aspergillus niger at 72h.


2010 ◽  
Vol 87 (2) ◽  
pp. 545-551 ◽  
Author(s):  
Norma N. Gamarra ◽  
Gretty K. Villena ◽  
Marcel Gutiérrez-Correa

2017 ◽  
Vol 6 (3) ◽  
Author(s):  
Nahideh Jafari ◽  
Hoda Jafarizadeh-Malmiri ◽  
Maryam Hamzeh-Mivehroud ◽  
Mohammad Adibpour

AbstractUltraviolet (UV) irradiation was used to induce mutagenesis in


2021 ◽  
Vol 9 (5) ◽  
pp. 895
Author(s):  
Carlotta Alias ◽  
Daniela Bulgari ◽  
Fabjola Bilo ◽  
Laura Borgese ◽  
Alessandra Gianoncelli ◽  
...  

A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.


Sign in / Sign up

Export Citation Format

Share Document