scholarly journals Building an Adversarial Attack Hat to Fool Facial Recognition

Author(s):  
Morgan Frearson

<div><div><div><p>The use of deep learning for human identification and object detection is becoming ever more prevalent in the surveillance industry. These systems have been trained to identify human body’s or faces with a high degree of accuracy. However, there have been successful attempts to fool these systems with different techniques called adversarial attacks. This paper presents an adversarial attack using infrared light on facial recognition systems. The relevance of this research is to exploit the physical downfalls of deep neural networks. This demonstration of weakness within these systems are in hopes that this research will be used in the future to improve the training models for object recognition. A research outline on infrared light and facial recognition are presented within this paper. A detailed analyzation of the current design phase and future steps of the of the project are presented including initial testing of the device. Any challenges are explored and evaluated such that the deliverables of the project remain consistent to its timeline. The project specifications may be subject to change overtime based on the outcomes of testing stages.</p></div></div></div>

2021 ◽  
Author(s):  
Morgan Frearson

<div><div><div><p>The use of deep learning for human identification and object detection is becoming ever more prevalent in the surveillance industry. These systems have been trained to identify human body’s or faces with a high degree of accuracy. However, there have been successful attempts to fool these systems with different techniques called adversarial attacks. This paper presents an adversarial attack using infrared light on facial recognition systems. The relevance of this research is to exploit the physical downfalls of deep neural networks. This demonstration of weakness within these systems are in hopes that this research will be used in the future to improve the training models for object recognition. A research outline on infrared light and facial recognition are presented within this paper. A detailed analyzation of the current design phase and future steps of the of the project are presented including initial testing of the device. Any challenges are explored and evaluated such that the deliverables of the project remain consistent to its timeline. The project specifications may be subject to change overtime based on the outcomes of testing stages.</p></div></div></div>


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 428
Author(s):  
Hyun Kwon ◽  
Jun Lee

This paper presents research focusing on visualization and pattern recognition based on computer science. Although deep neural networks demonstrate satisfactory performance regarding image and voice recognition, as well as pattern analysis and intrusion detection, they exhibit inferior performance towards adversarial examples. Noise introduction, to some degree, to the original data could lead adversarial examples to be misclassified by deep neural networks, even though they can still be deemed as normal by humans. In this paper, a robust diversity adversarial training method against adversarial attacks was demonstrated. In this approach, the target model is more robust to unknown adversarial examples, as it trains various adversarial samples. During the experiment, Tensorflow was employed as our deep learning framework, while MNIST and Fashion-MNIST were used as experimental datasets. Results revealed that the diversity training method has lowered the attack success rate by an average of 27.2 and 24.3% for various adversarial examples, while maintaining the 98.7 and 91.5% accuracy rates regarding the original data of MNIST and Fashion-MNIST.


2020 ◽  
Vol 34 (07) ◽  
pp. 10901-10908 ◽  
Author(s):  
Abdullah Hamdi ◽  
Matthias Mueller ◽  
Bernard Ghanem

One major factor impeding more widespread adoption of deep neural networks (DNNs) is their lack of robustness, which is essential for safety-critical applications such as autonomous driving. This has motivated much recent work on adversarial attacks for DNNs, which mostly focus on pixel-level perturbations void of semantic meaning. In contrast, we present a general framework for adversarial attacks on trained agents, which covers semantic perturbations to the environment of the agent performing the task as well as pixel-level attacks. To do this, we re-frame the adversarial attack problem as learning a distribution of parameters that always fools the agent. In the semantic case, our proposed adversary (denoted as BBGAN) is trained to sample parameters that describe the environment with which the black-box agent interacts, such that the agent performs its dedicated task poorly in this environment. We apply BBGAN on three different tasks, primarily targeting aspects of autonomous navigation: object detection, self-driving, and autonomous UAV racing. On these tasks, BBGAN can generate failure cases that consistently fool a trained agent.


Author(s):  
Anna Ilina ◽  
Vladimir Korenkov

The task of counting the number of people is relevant when conducting various types of events, which may include seminars, lectures, conferences, meetings, etc. Instead of monotonous manual counting of participants, it is much more effective to use facial recognition technology, which makes it possible not only to quickly count those present, but also to recognize each of them, which makes it possible to conduct further analysis of this data, identify patterns in them and predict. The research conducted in this paper determines the quality assessment of the use of facial recognition technology in images andvideo streams, based on the use of a deep neural network, to solve the problem of automating attendance tracking.


Author(s):  
Jian Li ◽  
Yanming Guo ◽  
Songyang Lao ◽  
Yulun Wu ◽  
Liang Bai ◽  
...  

AbstractImage classification systems have been found vulnerable to adversarial attack, which is imperceptible to human but can easily fool deep neural networks. Recent researches indicate that regularizing the network by introducing randomness could greatly improve the model’s robustness against adversarial attack, but the randomness module would normally involve complex calculations and numerous additional parameters and seriously affect the model performance on clean data. In this paper, we propose a feature matching module to regularize the network. Specifically, our model learns a feature vector for each category and imposes additional restrictions on image features. Then, the similarity between image features and category features is used as the basis for classification. Our method does not introduce any additional network parameters than undefended model and can be easily integrated into any neural network. Experiments on the CIFAR10 and SVHN datasets highlight that our proposed module can effectively improve both clean data and perturbed data accuracy in comparison with the state-of-the-art defense methods and outperform the L2P method by 6.3$$\%$$ % , 24$$\%$$ % on clean and perturbed data, respectively, using ResNet-V2(18) architecture.


2021 ◽  
Vol 20 (6) ◽  
pp. 1-24
Author(s):  
Jason Servais ◽  
Ehsan Atoofian

In recent years, Deep Neural Networks (DNNs) have been deployed into a diverse set of applications from voice recognition to scene generation mostly due to their high-accuracy. DNNs are known to be computationally intensive applications, requiring a significant power budget. There have been a large number of investigations into energy-efficiency of DNNs. However, most of them primarily focused on inference while training of DNNs has received little attention. This work proposes an adaptive technique to identify and avoid redundant computations during the training of DNNs. Elements of activations exhibit a high degree of similarity, causing inputs and outputs of layers of neural networks to perform redundant computations. Based on this observation, we propose Adaptive Computation Reuse for Tensor Cores (ACRTC) where results of previous arithmetic operations are used to avoid redundant computations. ACRTC is an architectural technique, which enables accelerators to take advantage of similarity in input operands and speedup the training process while also increasing energy-efficiency. ACRTC dynamically adjusts the strength of computation reuse based on the tolerance of precision relaxation in different training phases. Over a wide range of neural network topologies, ACRTC accelerates training by 33% and saves energy by 32% with negligible impact on accuracy.


Author(s):  
S. A. Sakulin ◽  
A. N. Alfimtsev ◽  
D. A. Loktev ◽  
A. O. Kovalenko ◽  
V. V. Devyatkov

Recently, human recognition systems based on deep machine learning, in particular, on the basis of deep neural networks, have become widespread. In this regard, research has become relevant in the field of protection against recognition by such systems. In this article a method of designing a specially selected type of camouflage applied to clothing, which will protect a person both from recognition by a human observer and from a deep neural network recognition system is proposed. This type of camouflage is constructed on the basis of competitive examples that are generated by a deep neural network. The article describes experiments on human protection from recognition by Faster-RCNN (Regional Convolution Neural Networks) Inception V2 and Faster-RCNN ResNet101 systems. However, the implementation of camouflage is considered on a macro level, which assesses the combination of the camouflage and background, and the micro level which analyzes the relationship between the properties of individual regions of the camouflage properties of the adjacent regions, with constraints on their continuity, smoothness, closure, asymmetry. The dependence of camouflage characteristics on the conditions of observation of the object and the environment is also considered: the transparency of the atmosphere, the intensity of pixels of the sky horizon and the background, the level of contrast of the background and the camouflaged object, the distance to the object. As an example of a possible attack, a “black box” attack, which involves preliminary testing of generated adversarial examples on a target recognition system without knowledge of the internal structure of this system, is considered. Results of these experiments showed the high efficiency of the proposed method in the virtual world, when there is access to each pixel of the image supplied to the input systems. In the real world, results are less impressive, which can be explained by the distortion of colors when printing on the fabric, as well as the lack of spatial resolution of this print.


Sign in / Sign up

Export Citation Format

Share Document