scholarly journals Diversity Adversarial Training against Adversarial Attack on Deep Neural Networks

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 428
Author(s):  
Hyun Kwon ◽  
Jun Lee

This paper presents research focusing on visualization and pattern recognition based on computer science. Although deep neural networks demonstrate satisfactory performance regarding image and voice recognition, as well as pattern analysis and intrusion detection, they exhibit inferior performance towards adversarial examples. Noise introduction, to some degree, to the original data could lead adversarial examples to be misclassified by deep neural networks, even though they can still be deemed as normal by humans. In this paper, a robust diversity adversarial training method against adversarial attacks was demonstrated. In this approach, the target model is more robust to unknown adversarial examples, as it trains various adversarial samples. During the experiment, Tensorflow was employed as our deep learning framework, while MNIST and Fashion-MNIST were used as experimental datasets. Results revealed that the diversity training method has lowered the attack success rate by an average of 27.2 and 24.3% for various adversarial examples, while maintaining the 98.7 and 91.5% accuracy rates regarding the original data of MNIST and Fashion-MNIST.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hyun Kwon

Deep neural networks perform well for image recognition, speech recognition, and pattern analysis. This type of neural network has also been used in the medical field, where it has displayed good performance in predicting or classifying patient diagnoses. An example is the U-Net model, which has demonstrated good performance in data segmentation, an important technology in the field of medical imaging. However, deep neural networks are vulnerable to adversarial examples. Adversarial examples are samples created by adding a small amount of noise to an original data sample in such a way that to human perception they appear to be normal data but they will be incorrectly classified by the classification model. Adversarial examples pose a significant threat in the medical field, as they can cause models to misidentify or misclassify patient diagnoses. In this paper, I propose an advanced adversarial training method to defend against such adversarial examples. An advantage of the proposed method is that it creates a wide variety of adversarial examples for use in training, which are generated by the fast gradient sign method (FGSM) for a range of epsilon values. A U-Net model trained on these diverse adversarial examples will be more robust to unknown adversarial examples. Experiments were conducted using the ISBI 2012 dataset, with TensorFlow as the machine learning library. According to the experimental results, the proposed method builds a model that demonstrates segmentation robustness against adversarial examples by reducing the pixel error between the original labels and the adversarial examples to an average of 1.45.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Guangling Sun ◽  
Yuying Su ◽  
Chuan Qin ◽  
Wenbo Xu ◽  
Xiaofeng Lu ◽  
...  

Although Deep Neural Networks (DNNs) have achieved great success on various applications, investigations have increasingly shown DNNs to be highly vulnerable when adversarial examples are used as input. Here, we present a comprehensive defense framework to protect DNNs against adversarial examples. First, we present statistical and minor alteration detectors to filter out adversarial examples contaminated by noticeable and unnoticeable perturbations, respectively. Then, we ensemble the detectors, a deep Residual Generative Network (ResGN), and an adversarially trained targeted network, to construct a complete defense framework. In this framework, the ResGN is our previously proposed network which is used to remove adversarial perturbations, and the adversarially trained targeted network is a network that is learned through adversarial training. Specifically, once the detectors determine an input example to be adversarial, it is cleaned by ResGN and then classified by the adversarially trained targeted network; otherwise, it is directly classified by this network. We empirically evaluate the proposed complete defense on ImageNet dataset. The results confirm the robustness against current representative attacking methods including fast gradient sign method, randomized fast gradient sign method, basic iterative method, universal adversarial perturbations, DeepFool method, and Carlini & Wagner method.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dipendra Jha ◽  
Vishu Gupta ◽  
Logan Ward ◽  
Zijiang Yang ◽  
Christopher Wolverton ◽  
...  

AbstractThe application of machine learning (ML) techniques in materials science has attracted significant attention in recent years, due to their impressive ability to efficiently extract data-driven linkages from various input materials representations to their output properties. While the application of traditional ML techniques has become quite ubiquitous, there have been limited applications of more advanced deep learning (DL) techniques, primarily because big materials datasets are relatively rare. Given the demonstrated potential and advantages of DL and the increasing availability of big materials datasets, it is attractive to go for deeper neural networks in a bid to boost model performance, but in reality, it leads to performance degradation due to the vanishing gradient problem. In this paper, we address the question of how to enable deeper learning for cases where big materials data is available. Here, we present a general deep learning framework based on Individual Residual learning (IRNet) composed of very deep neural networks that can work with any vector-based materials representation as input to build accurate property prediction models. We find that the proposed IRNet models can not only successfully alleviate the vanishing gradient problem and enable deeper learning, but also lead to significantly (up to 47%) better model accuracy as compared to plain deep neural networks and traditional ML techniques for a given input materials representation in the presence of big data.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3922
Author(s):  
Sheeba Lal ◽  
Saeed Ur Rehman ◽  
Jamal Hussain Shah ◽  
Talha Meraj ◽  
Hafiz Tayyab Rauf ◽  
...  

Due to the rapid growth in artificial intelligence (AI) and deep learning (DL) approaches, the security and robustness of the deployed algorithms need to be guaranteed. The security susceptibility of the DL algorithms to adversarial examples has been widely acknowledged. The artificially created examples will lead to different instances negatively identified by the DL models that are humanly considered benign. Practical application in actual physical scenarios with adversarial threats shows their features. Thus, adversarial attacks and defense, including machine learning and its reliability, have drawn growing interest and, in recent years, has been a hot topic of research. We introduce a framework that provides a defensive model against the adversarial speckle-noise attack, the adversarial training, and a feature fusion strategy, which preserves the classification with correct labelling. We evaluate and analyze the adversarial attacks and defenses on the retinal fundus images for the Diabetic Retinopathy recognition problem, which is considered a state-of-the-art endeavor. Results obtained on the retinal fundus images, which are prone to adversarial attacks, are 99% accurate and prove that the proposed defensive model is robust.


2020 ◽  
Vol 34 (07) ◽  
pp. 10901-10908 ◽  
Author(s):  
Abdullah Hamdi ◽  
Matthias Mueller ◽  
Bernard Ghanem

One major factor impeding more widespread adoption of deep neural networks (DNNs) is their lack of robustness, which is essential for safety-critical applications such as autonomous driving. This has motivated much recent work on adversarial attacks for DNNs, which mostly focus on pixel-level perturbations void of semantic meaning. In contrast, we present a general framework for adversarial attacks on trained agents, which covers semantic perturbations to the environment of the agent performing the task as well as pixel-level attacks. To do this, we re-frame the adversarial attack problem as learning a distribution of parameters that always fools the agent. In the semantic case, our proposed adversary (denoted as BBGAN) is trained to sample parameters that describe the environment with which the black-box agent interacts, such that the agent performs its dedicated task poorly in this environment. We apply BBGAN on three different tasks, primarily targeting aspects of autonomous navigation: object detection, self-driving, and autonomous UAV racing. On these tasks, BBGAN can generate failure cases that consistently fool a trained agent.


2020 ◽  
Vol 92 (1) ◽  
pp. 388-395
Author(s):  
Lisa Linville ◽  
Dylan Anderson ◽  
Joshua Michalenko ◽  
Jennifer Galasso ◽  
Timothy Draelos

Abstract The impressive performance that deep neural networks demonstrate on a range of seismic monitoring tasks depends largely on the availability of event catalogs that have been manually curated over many years or decades. However, the quality, duration, and availability of seismic event catalogs vary significantly across the range of monitoring operations, regions, and objectives. Semisupervised learning (SSL) enables learning from both labeled and unlabeled data and provides a framework to leverage the abundance of unreviewed seismic data for training deep neural networks on a variety of target tasks. We apply two SSL algorithms (mean-teacher and virtual adversarial training) as well as a novel hybrid technique (exponential average adversarial training) to seismic event classification to examine how unlabeled data with SSL can enhance model performance. In general, we find that SSL can perform as well as supervised learning with fewer labels. We also observe in some scenarios that almost half of the benefits of SSL are the result of the meaningful regularization enforced through SSL techniques and may not be attributable to unlabeled data directly. Lastly, the benefits from unlabeled data scale with the difficulty of the predictive task when we evaluate the use of unlabeled data to characterize sources in new geographic regions. In geographic areas where supervised model performance is low, SSL significantly increases the accuracy of source-type classification using unlabeled data.


Sign in / Sign up

Export Citation Format

Share Document