scholarly journals Sovereign: Self-contained Smart Home with Data-centric Network and Security

Author(s):  
Zhiyi Zhang ◽  
Tianyuan Yu ◽  
Xinyu Ma ◽  
Yu Guan ◽  
Philipp Moll ◽  
...  

<p>Recent years have witnessed the rapid deployment of smart homes; most of them are controlled by remote servers in the cloud. Such designs raise security and privacy concerns for end users. In this paper, we describe the design of Sovereign, a home IoT system framework that provides end users complete control of their home IoT systems. Sovereign lets home IoT devices and applications communicate via application-named data and secures data directly. This enables direct, secure, one-to-one and one-to-many device-to-device communication over wireless broadcast media. Sovereign utilizes semantic names to construct usable security solutions. We implement Sovereign as a publish-subscribe-based development platform together with a prototype home IoT controller. Our preliminary evaluation shows that Sovereign provides a systematic, easy-to-use solution to user-controlled, self-contained smart homes running on existing IoT hardware without imposing noticeable overhead.</p>

2021 ◽  
Author(s):  
Zhiyi Zhang ◽  
Tianyuan Yu ◽  
Xinyu Ma ◽  
Yu Guan ◽  
Philipp Moll ◽  
...  

<p>Recent years have witnessed the rapid deployment of smart homes; most of them are controlled by remote servers in the cloud. Such designs raise security and privacy concerns for end users. In this paper, we describe the design of Sovereign, a home IoT system framework that provides end users complete control of their home IoT systems. Sovereign lets home IoT devices and applications communicate via application-named data and secures data directly. This enables direct, secure, one-to-one and one-to-many device-to-device communication over wireless broadcast media. Sovereign utilizes semantic names to construct usable security solutions. We implement Sovereign as a publish-subscribe-based development platform together with a prototype home IoT controller. Our preliminary evaluation shows that Sovereign provides a systematic, easy-to-use solution to user-controlled, self-contained smart homes running on existing IoT hardware without imposing noticeable overhead.</p>


Author(s):  
A.YU. Pyrkova ◽  
ZH.E. Temirbekova

The Internet of Things (IoT) combines many devices with various platforms, computing capabilities and functions. The heterogeneity of the network and the ubiquity of IoT devices place increased demands on security and privacy protection. Therefore, cryptographic mechanisms must be strong enough to meet these increased requirements, but at the same time they must be effective enough to be implemented on devices with disabilities. One of the limited devices are microcontrollers and smart cards. This paper presents the performance and memory limitations of modern cryptographic primitives and schemes on various types of devices that can be used in IoT. In this article, we provide a detailed assessment of the performance of the most commonly used cryptographic algorithms on devices with disabilities that often appear on IoT networks. We relied on the most popular open source microcontroller development platform, on the mbed platform. To provide a data protection function, we use cryptography asymmetric fully homomorphic encryption in the binary ring and symmetric cryptography AES 128 bit. In addition, we compared run-time encryption and decryption on a personal computer (PC) with Windows 7, the Bluetooth Low Energy (BLE) Nano Kit microcontroller, the BLE Nano 1.5, and the smartcard ML3-36k-R1.


2021 ◽  
Vol 7 (2) ◽  
pp. 245-246
Author(s):  
Weizhi Meng ◽  
Daniel Xiapu Luo ◽  
Chunhua Su ◽  
Debiao He ◽  
Marios Anagnostopoulos ◽  
...  

Author(s):  
Chang Liu ◽  
Ying Zhong ◽  
Sertac Ozercan ◽  
Qing Zhu

This paper presents a template-based solution to overcome technical barriers non-technical computer end users face when developing functional learning environments in three-dimensional virtual worlds (3DVW). iVirtualWorld, a prototype of a platform-independent 3DVW creation tool that implements the proposed solution, facilitates 3DVW learning environment creation through semantics-based abstract 3DVW representation and template-based 3DVW instantiation. iVirtualWorld provides a wizard to guide the 3DVW creation process, and hide low-level programming and 3D design details through higher-level abstracts supported by pre-defined templates. Preliminary evaluation of the effectiveness of iVirtualWorld showed positive results. The contribution of this study is threefold: 1) It provides a paradigm for investigating and developing 3DVW building tools from end users’ perspective; 2) It develops a prototype of a 3DVW building tool, which gives educators a framework to easily create educational virtual worlds using domain-specific concepts; 3) It conducts empirical research and collected preliminary experimental data for evaluation.


2021 ◽  
Author(s):  
◽  
L. P. Bopape

With the advent of IoT, Device-to-Device (D2D) communications has afforded a new paradigm that reliably facilitates data exchange among devices in proximity without necessarily involving the base (core) network. It is geared towards the need to improve network performance where short-range communications is concerned, as well as supporting proximitybased services. However, the relentless growth in the number of network end-users as well as interconnected communication-capable devices, in the next-generation IoT-based 5G cellular networks has resulted in novel services and applications, most of which are security-sensitive. It is thus of paramount importance that security issues be addressed. A posing challenge is that the devices are mostly resource-constrained in both power and computing. As such, it is not practical to implement present day as well as traditional security frameworks and protocols under such a scenario, unless strides are taken towards the improvements of data throughput rates, higher bandwidth provisioning, lower round trip latencies, enhanced spectral efficiencies, and energy efficiency (leading to even lower power consumption, by the already constrained devices) in IoT 5G/LTE networks. Therefore, this work focused on exploring and designing schemes that enhance security and privacy among communicating parties. Otherwise, without reliable as well as robust privacy and security preservation measures in the network, most services and applications will be exposed to various forms of malicious attacks. With such a widened cyber-attack space, both privacy and security for end users can easily be compromised. The work herein addresses privacy for subscribers to the various available services and applications as well as security of the associated data. Ultimately, we propose a Fog-Cloud computing paradigm-assisted security framework that comprises two schemes. The aim is to implement a lightweight-based cartographic algorithm that ensures that communication overheads, round trip latencies, computational loads as well as energy consumption by the otherwise resource-constrained surveillance cameras deployed remotely, are kept minimal. Overall, by way of both analysis and simulation, we ascertain that a Fog-Cloud computing-based lightweight security-based scheme has the potential to greatly improve security and privacy preservation, as well as overall performance despite the resource-constrained nature of the devices.


Author(s):  
Puspanjali Mallik

The internet of things (IoT) fulfils abundant demands of present society by facilitating the services of cutting-edge technology in terms of smart home, smart healthcare, smart city, smart vehicles, and many more, which enables present day objects in our environment to have network communication and the capability to exchange data. These wide range of applications are collected, computed, and provided by thousands of IoT elements placed in open spaces. The highly interconnected heterogeneous structure faces new types of challenges from a security and privacy concern. Previously, security platforms were not so capable of handling these complex platforms due to different communication stacks and protocols. It seems to be of the utmost importance to keep concern about security issues relating to several attacks and vulnerabilities. The main motive of this chapter is to analyze the broad overview of security vulnerabilities and its counteractions. Generally, it discusses the major security techniques and protocols adopted by the IoT and analyzes the attacks against IoT devices.


Author(s):  
V. Jeevika Tharini ◽  
S. Vijayarani

One of the best-known features of IoT is automation. Because of this, IoT is a much-needed field for many applications, namely emergency and healthcare domains. IoT has made many revolutionary changes in the healthcare industry. IoT paves the way to numerous advancements for healthcare. The possibilities of IoT have reached their peak in the commercial industry and health sector. In recent years, serious concerns have been raised over the control and access of one's individual information. Privacy and security of the IoT devices can be compromised by intruders. Apart from the numerous benefits of IoTs, there are several security and privacy concerns to consider. A brief overview of different kinds of security attacks, solution for the attacks, privacy and security issues are discussed in this chapter.


Author(s):  
Emanuel J. Mendes ◽  
Matheus M. Silveira ◽  
Matheus B. Araujo ◽  
Joaquim Celestino ◽  
Rafael L. Gomes
Keyword(s):  

2018 ◽  
Vol 7 (4.6) ◽  
pp. 398
Author(s):  
Sankaranarayanan P.J ◽  
Geogen George

A blockchain is a decentralized, disseminated and digital ledger that can’t be altered retroactively without modifying every single blocks and the consensus of the network. Blockchain can be used in smart contracts, Banks, IoT devices, Database management, etc., Due to recent times flaws and leakage of Aadhaar information (Aadhaar which is the largest government databases of the Indian citizens) in Internet the security and privacy of Aadhaar became questionable. In order to ensure the security of Aadhaar, Blockchain has the potential to overcome security and privacy challenges in Aadhaar. In this project we are going to create a Blockchain for Aadhaar database and implement light weight algorithm for efficiency, optimization and scalability along with the Blockchain securing algorithm. 


Sign in / Sign up

Export Citation Format

Share Document