scholarly journals Minimum BER Criterion Based Robust Blind Separation for MIMO Systems

2019 ◽  
pp. 38-44
Author(s):  
Zhongqiang Luo ◽  
Wei Zhang ◽  
Lidong Zhu ◽  
Chengjie Li

In this paper, a robust blind source separation (BSS) algorithm is investigated based on a new cost function for noise suppression. This new cost function is established according to the criterion of minimum bit error rate (BER) incorporated into maximum likelihood (ML) principle based independent component analysis (ICA). With the help of natural gradient search, the blind separation work is carried out through optimizing this constructed cost function. Simulation results and analysis corroborate that the proposed blind separation algorithm can realize better performance in speed of convergence and separation accuracy as opposed to the conventional ML-based BSS.

2014 ◽  
Vol 599-601 ◽  
pp. 1357-1359
Author(s):  
Wei Hua Liu ◽  
Yun Zhang ◽  
Ying Fu Chen ◽  
Lei Wang ◽  
Jian Cheng Liu

A novel blind source separation (BSS) algorithm for linear mixture signals is proposed. It is shown that the property can be used to separate source signals by finding an un-mixing matrix that maximizes the cost function value of separated signals. Simulation results illustrate the efficiency and the good performance of the algorithm.


Author(s):  
Kanagasabai Lenin

This paper proposes Enhanced Frog Leaping Algorithm (EFLA) to solve the optimal reactive power problem. Frog leaping algorithm (FLA) replicates the procedure of frogs passing though the wetland and foraging deeds. Set of virtual frogs alienated into numerous groups known as “memeplexes”. Frog’s position’s turn out to be closer in every memeplex after few optimization runs and certainly, this crisis direct to premature convergence. In the proposed Enhanced Frog Leaping Algorithm (EFLA) the most excellent frog information is used to augment the local search in each memeplex and initiate to the exploration bound acceleration. To advance the speed of convergence two acceleration factors are introduced in the exploration plan formulation. Proposed Enhanced Frog Leaping Algorithm (EFLA) has been tested in standard IEEE 14,300 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.


2018 ◽  
Vol 7 (1.8) ◽  
pp. 245
Author(s):  
Jayakumari J ◽  
Rakhi K J

With the widespread effective usage of LEDs the visible light communication (VLC) system has brought out an increasing interest in the field of wireless communication recently. VLC is envisioned to be an appealing substitute to RF systems because of the advantages of LEDs such as high communication security, rich spectrum, etc. For achieving bearable inter symbol interference (ISI) and high data rates, OFDM can be employed in VLC. In this paper, the performance of VLC system with popular unipolar versions of OFDM viz. Flip-OFDM and ACO-OFDM is analyzed in fading channels. From the simulation results it is seen that the Flip-OFDM-VLC system outperforms the ACO-OFDM-VLC system in terms of bit error rate and is well suited for future 5G applications.


2014 ◽  
Vol 519-520 ◽  
pp. 1051-1056
Author(s):  
Jie Guo ◽  
An Quan Wei ◽  
Lei Tang

This paper analyzed a blind source separation algorithm based on cyclic frequency of complex signals. Under the blind source separation model, we firstly gave several useful assumptions. Then we discussed the derivation of the BSS algorithm, including the complex signals and the normalization situation. Later, we analyzed the complex WCW-CS algorithm, which was compared with NGA, NEASI and NGA-CS algorithms. Simulation results show that the complex WCW-CS algorithm has the best convergence and separation performance. It can also effectively separate mixed image signals, whose performance was better than NGA algorithm.


Signals ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 1-10
Author(s):  
Md. Noor-A-Rahim ◽  
M. Omar Khyam ◽  
Apel Mahmud ◽  
Xinde Li ◽  
Dirk Pesch ◽  
...  

Long-range (LoRa) communication has attracted much attention recently due to its utility for many Internet of Things applications. However, one of the key problems of LoRa technology is that it is vulnerable to noise/interference due to the use of only up-chirp signals during modulation. In this paper, to solve this problem, unlike the conventional LoRa modulation scheme, we propose a modulation scheme for LoRa communication based on joint up- and down-chirps. A fast Fourier transform (FFT)-based demodulation scheme is devised to detect modulated symbols. To further improve the demodulation performance, a hybrid demodulation scheme, comprised of FFT- and correlation-based demodulation, is also proposed. The performance of the proposed scheme is evaluated through extensive simulation results. Compared to the conventional LoRa modulation scheme, we show that the proposed scheme exhibits over 3 dB performance gain at a bit error rate of 10−4.


Sign in / Sign up

Export Citation Format

Share Document