2019 ◽  
Author(s):  
Anindya Apriliyanti Pravitasari ◽  
Nur Indah Nirmalasari ◽  
Nur Iriawan ◽  
Irhamah ◽  
Kartika Fithriasari ◽  
...  

Author(s):  
Tomáš Konderla ◽  
Václav Klepáč

The article points out the possibilities of using Hidden Markov model (abbrev. HMM) for estimation of Value at Risk metrics (abbrev. VaR) in sample. For the illustration we use data of the company listed on Prague Stock Exchange in range from January 2011 to June 2016. HMM approach allows us to classify time series into different states based on their development characteristic. Due to a deeper shortage of existing domestic results or comparison studies with advanced volatility governed VaR forecasts we tested HMM with univariate ARMA‑GARCH model based VaR estimates. The common testing via Kupiec and Christoffersen procedures offer generalization that HMM model performs better that volatility based VaR estimation technique in terms of accuracy, even with the simpler HMM with normal‑mixture distribution against previously used GARCH with many types of non‑normal innovations.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 373
Author(s):  
Branislav Panić ◽  
Jernej Klemenc ◽  
Marko Nagode

A commonly used tool for estimating the parameters of a mixture model is the Expectation–Maximization (EM) algorithm, which is an iterative procedure that can serve as a maximum-likelihood estimator. The EM algorithm has well-documented drawbacks, such as the need for good initial values and the possibility of being trapped in local optima. Nevertheless, because of its appealing properties, EM plays an important role in estimating the parameters of mixture models. To overcome these initialization problems with EM, in this paper, we propose the Rough-Enhanced-Bayes mixture estimation (REBMIX) algorithm as a more effective initialization algorithm. Three different strategies are derived for dealing with the unknown number of components in the mixture model. These strategies are thoroughly tested on artificial datasets, density–estimation datasets and image–segmentation problems and compared with state-of-the-art initialization methods for the EM. Our proposal shows promising results in terms of clustering and density-estimation performance as well as in terms of computational efficiency. All the improvements are implemented in the rebmix R package.


Sign in / Sign up

Export Citation Format

Share Document