scholarly journals Evaluation of Energy-Efficient Office Building through Glass Thermal Properties, Shading Devices and Window-wall Ratio

Author(s):  
Ashwini Patil
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Md. Jewel Rana ◽  
Md. Rakibul Hasan ◽  
Md. Habibur Rahman Sobuz

PurposeApplication of appropriate shading device strategies in buildings can reduce direct solar heat gain through windows as well as optimize cooling and artificial lighting load. This study investigates the impact of common shading devices such as overhangs, fins, horizontal blinds, vertical blinds and drapes on energy consumption of an office building and suggests energy efficient shading device strategies in the contexts of unique Bangladeshi subtropical monsoon climate.Design/methodology/approachThis research was performed through the energy simulation perspective of a prototype office building using a validated building energy simulation tool eQUEST. Around 100 simulation patterns were created considering various types of shading devices and building orientations. The simulation results were analysed comprehensively to find out energy-efficient shading device strategies.FindingsOptimum overhang and fin height is equal to half of the window height in the context of the subtropical climate of Bangladesh. South and West are the most vulnerable orientations, and application of shading devices on these two orientations shows the highest reduction of cooling load and the lowest increment of lighting load. An existing building was able to save approximately 7.05% annual energy consumption by applying the shading device strategies that were suggested by this study.Originality/valueThe shading device strategies of this study can be incorporated into the Bangladesh National Building Code (BNBC) as new energy-efficient building design strategies because the BNBC does not have any codes or regulations regarding energy-efficient shading device. It can also be used as energy-efficient shading device strategies to other Southeast Asian countries with similar climatic contexts of Bangladesh.


2010 ◽  
Vol 16 (3) ◽  
pp. 345-351 ◽  
Author(s):  
Violeta Motuzienė ◽  
Egidijus Saulius Juodis

The number of office buildings with highly fenestrated facades is currently increasing in Lithuania and neighboring countries. Highly fenestrated facades reduce energy consumption for lighting and simultaneously increase energy consumption for heating, cooling, air conveying and may cause thermal and visual discomfort. Pursuing to reduce negative effects of the highly glazed facade, special glasses are frequently used. However, such windows usually increase demand for lighting energy. Therefore, when making early decisions about glazing the building, it is important to have a complex evaluation of energy demand related to the specific case. The paper presents the results of analysis made using energy simulation tools. The obtained results have shown that when shading is not applied, the north is the most energy efficient orientation to glazing for an air conditioned office building in cool climate zones like Lithuania. The most energy efficient window‐to‐wall ratios (WWR) for the south, east and west oriented façade are 20%, whereas for the north it makes 20–40%. However, such WWR values do not satisfy standard requirements for day lighting. Santrauka Pastaraisiais metais Lietuvoje ir kaimyninese šalyse daugeja administracines paskirties pastatu, kuriu dauguma išoriniu atitvaru yra skaidrios. Didesnis istiklinimo plotas lemia mažesnius energijos poreikius apšvietimui, tačiau didina šildymo ir vesinimo sistemu energijos poreikius, sukelia šilumini bei vizualini diskomforta. Neigiamai dideliu skaidriu atitvaru itakai sumažinti naudojami tamsinti ir kitu specialiu charakteristiku stiklai, tačiau tai savo ruožtu didina energijos poreiki apšvietimui. Todel, priimant sprendimus del pastato istiklinimo, svarbu prieš tai kompleksiškai išnagrineti konkretaus sprendimo itaka pastato energijos poreikiams. Straipsnyje pateikiama modeliuojant gautu rezultatu analize. Rezultatai parode, kad vesaus klimato šalyse, kurioms priklauso ir Lietuva, kondicionuojamu administraciniu pastatu fasadu, kai nenaudojamos apsaugos nuo saules priemones, energiškai efektyviausias istiklinimas yra i šiaures puse. Energiškai efektyviausias santykinis fasado istiklinimo plotas pietines, rytines ir vakarines orientacijos fasadams yra 20 %, o šiaurines ‐ 20–40 %. Tačiau tokie istiklinimo plotai neatitinka norminiu natūralaus apšvietimo reikalavimu.


Author(s):  
Alexandre Pépin ◽  
Louis Gosselin ◽  
Jonathan Dallaire

An office building located in Quebec City (Canada) with different envelope assemblies has been simulated in order to determine the energy consumption and thermal comfort that they provide. The resistance, thermal mass, and materials (concrete, cross-laminated timbers (CLT), and light-frame) are varied in a series of 164 different scenarios and the energy intensities for heating and cooling determined in each case, along with the discomfort index. Results show that the materiel used to provide thermal mass has a larger impact on comfort and energy consumption than the value of the thermal mass thickness itself. It was also attempted to correlate the performance of the envelope and its thermal mass with three dynamic thermal properties (i.e., dynamic transmittance, areal heat capacity, and decrement factor). Apart from thermal resistance, the internal areal heat capacity appeared to be the most important variable to explain variations of performance of the envelope.


2020 ◽  
Vol 12 (23) ◽  
pp. 10145
Author(s):  
Abdelhakim Mesloub ◽  
Aritra Ghosh ◽  
Mabrouk Touahmia ◽  
Ghazy Abdullah Albaqawy ◽  
Emad Noaime ◽  
...  

This paper presents the impact on energy performance and visual comfort of retrofitting photovoltaic integrated shading devices (PVSDs) to the façade of a prototype office building in a hot desert climate. EnergyPlus™ and the DIVA-for-Rhino© plug-ins were used to perform numerical simulations and parametric analyses examining the energy performance and visual comfort of five configurations, namely: (1) inclined single panel PVSDs, (2) unfilled eggcrate PVSDs, (3) a louvre PVSD of ten slats tilted 30° outward, (4) a louvre PVSD of five slats tilted 30° outward, and (5) an STPV module with 20% transparency which were then compared to a reference office building (ROB) model. The field measurements of an off-grid system at various tilt angles provided an optimum tilt angle of 30°. A 30° tilt was then integrated into some of the PVSD designs. The results revealed that the integration of PVSDs significantly improved overall energy performance and reduced glare. The unfilled eggcrate PVSD did not only have the highest conversion efficiency at ȵ 20% but generated extra energy as well; an essential feature in the hot desert climate of Saudi Arabia.


Sign in / Sign up

Export Citation Format

Share Document