scholarly journals Pencitraan Kedokteran Nuklir Pada Pasien Metastasis Tulang dengan Kanker Payudara

Syntax Idea ◽  
2021 ◽  
Vol 3 (12) ◽  
pp. 2564
Author(s):  
Esther Devina Panjaitan ◽  
Hendra Budiawan

Bone is the most common site to which breast cancer metastasizes and sometimes is the first affected site in a substantial proportion of women with advanced breast cancer. A lot of study has highlighted that imaging modalities visualize different aspects of osseous tissues (cortex or marrow). Imaging bone metastases is problematic because the lesions can be osteolytic, osteoblastic, or mixed, and imaging modalities are based on either direct anatomic visualization of the bone or tumor or indirect measurements of bone or tumor metabolism. Bone imaging by skeletal scintigraphy can be an essential part, and positron emission tomography or single-photon emission computed tomography have a potential of evaluating bone metastases, but no consensus exists as to the best modality for diagnosing the lesion and for assessing its response to treatment. In this review, we discuss the use of each nuclear imaging for bone modality for diagnosing bone metastases from breast cancer

2004 ◽  
Vol 22 (14) ◽  
pp. 2942-2953 ◽  
Author(s):  
Tsuyoshi Hamaoka ◽  
John E. Madewell ◽  
Donald A. Podoloff ◽  
Gabriel N. Hortobagyi ◽  
Naoto T. Ueno

Bone is the most common site to which breast cancer metastasizes. Imaging—by skeletal scintigraphy, plain radiography, computed tomography, or magnetic resonance imaging—is an essential part, and positron emission tomography or single-photon emission computed tomography have a potential of evaluating bone metastases, but no consensus exists as to the best modality for diagnosing the lesion and for assessing its response to treatment. Imaging bone metastases is problematic because the lesions can be osteolytic, osteoblastic, or mixed, and imaging modalities are based on either direct anatomic visualization of the bone or tumor or indirect measurements of bone or tumor metabolism. Although bone metastases can be treated, their response to treatment is considered “unmeasurable” according to existing response criteria. Therefore, the process by which oncologists and radiologists diagnose and monitor the response of bone metastases needs revision, and the current inability to assess the response of bone metastases excludes patients with breast cancer and bone disease from participating in clinical trials of new treatments for breast cancer. In this review of the MEDLINE literature, we discuss the pros and cons of each modality for diagnosing bone metastases and for assessing their response to treatment and we present a practical approach for diagnosis and assessment of bone metastasis.


2015 ◽  
Vol 3 (2) ◽  
pp. 38
Author(s):  
Sahithi Dathar ◽  
Sudhakara Reddy ◽  
Jyothirmai Koneru ◽  
M Preethi ◽  
Satheesh Guvvala

<p>Nuclear imaging is an exceptional branch of medical science that has been evolved in the latest decades in early diagnosis of a disease. The main underlying principle is that radioisotopes are injected in the body and emits gamma rays which are detected by special image receptors. Various nuclear imaging modalities include Scintigraphy, SPECT (Single photon emission computed tomography) and PET (Positron emission tomography) which can assess any functional changes that occur within a diseased cell. This article has essentially dealt with the fundamental principles of various nuclear imaging modalities and their applications in oral and maxillofacial region.</p>


2016 ◽  
Vol 2 (1) ◽  
pp. 27 ◽  
Author(s):  
Josep L Melero-Ferrer ◽  
Raquel López-Vilella ◽  
Herminio Morillas-Climent ◽  
Jorge Sanz-Sánchez ◽  
Ignacio J Sánchez-Lázaro ◽  
...  

Imaging techniques play a main role in heart failure (HF) diagnosis, assessment of aetiology and treatment guidance. Echocardiography is the method of choice for its availability, cost and it provides most of the information required for the management and follow up of HF patients. Other non-invasive cardiac imaging modalities, such as cardiovascular magnetic resonance (CMR), nuclear imaging-positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and computed tomography (CT) could provide additional aetiological, prognostic and therapeutic information, especially in selected populations. This article reviews current indications and possible future applications of imaging modalities to improve the management of HF patients.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Natalie A. Bebbington ◽  
Bryan T. Haddock ◽  
Henrik Bertilsson ◽  
Eero Hippeläinen ◽  
Ellen M. Husby ◽  
...  

Abstract Background Computed tomography (CT) scans are routinely performed in positron emission tomography (PET) and single photon emission computed tomography (SPECT) examinations globally, yet few surveys have been conducted to gather national diagnostic reference level (NDRL) data for CT radiation doses in positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography/computed tomography (SPECT/CT). In this first Nordic-wide study of CT doses in hybrid imaging, Nordic NDRL CT doses are suggested for PET/CT and SPECT/CT examinations specific to the clinical purpose of CT, and the scope for optimisation is evaluated. Data on hybrid imaging CT exposures and clinical purpose of CT were gathered for 5 PET/CT and 8 SPECT/CT examinations via designed booklet. For each included dataset for a given facility and scanner type, the computed tomography dose index by volume (CTDIvol) and dose length product (DLP) was interpolated for a 75-kg person (referred to as CTDIvol,75kg and DLP75kg). Suggested NDRL (75th percentile) and achievable doses (50th percentile) were determined for CTDIvol,75kg and DLP75kg according to clinical purpose of CT. Differences in maximum and minimum doses (derived for a 75-kg patient) between facilities were also calculated for each examination and clinical purpose. Results Data were processed from 83 scanners from 43 facilities. Data were sufficient to suggest Nordic NDRL CT doses for the following: PET/CT oncology (localisation/characterisation, 15 systems); infection/inflammation (localisation/characterisation, 13 systems); brain (attenuation correction (AC) only, 11 systems); cardiac PET/CT and SPECT/CT (AC only, 30 systems); SPECT/CT lung (localisation/characterisation, 12 systems); bone (localisation/characterisation, 30 systems); and parathyroid (localisation/characterisation, 13 systems). Great variations in dose were seen for all aforementioned examinations. Greatest differences in DLP75kg for each examination, specific to clinical purpose, were as follows: SPECT/CT lung AC only (27.4); PET/CT and SPECT/CT cardiac AC only (19.6); infection/inflammation AC only (18.1); PET/CT brain localisation/characterisation (16.8); SPECT/CT bone localisation/characterisation (10.0); PET/CT oncology AC only (9.0); and SPECT/CT parathyroid localisation/characterisation (7.8). Conclusions Suggested Nordic NDRL CT doses are presented according to clinical purpose of CT for PET/CT oncology, infection/inflammation, brain, PET/CT and SPECT/CT cardiac, and SPECT/CT lung, bone, and parathyroid. The large variation in doses suggests great scope for optimisation in all 8 examinations.


1997 ◽  
Vol 8 (S3) ◽  
pp. 239-243 ◽  
Author(s):  
David L. Sultzer

Neuroimaging studies have contributed greatly to our understanding of Alzheimer's disease and other dementias. Computed tomography and magnetic resonance imaging reveal brain structure and aid in the diagnostic evaluation of patients with cognitive impairment. Functional neuroimaging studies use positron emission tomography, single-photon emission computed tomography, and other methods to measure regional cerebral activity, including metabolic rate, blood flow, and neuroreceptor density. Functional neuroimaging results can be useful clinically and have also been used in a variety of research applications to examine physiologic variables in neuropsychiatric illnesses.


Sign in / Sign up

Export Citation Format

Share Document