scholarly journals Physical and Mechanical Properties of Magnesium (Mg) Matrix Composites Reinforced with Carbon Nanotube (CNT) Fabricated by Powder Metallurgy Technique

2019 ◽  
Vol 14 (7) ◽  
pp. 10087-10091
Author(s):  
Hayder Muneam Abed Zaid ◽  
Abdul Rahman N. Abed ◽  
Hala S. Hasan
Author(s):  
M. A. Salem ◽  
I. G. El-Batanony ◽  
M. Ghanem ◽  
Mohamed Ibrahim Abd ElAal

Different Al-SiC metal matrix composites (MMCs) with a different matrix, reinforcement sizes, and volume fractions were fabricated using ball milling (BM) and powder metallurgy (PM) techniques. Al and Al-SiC composites with different volume fractions were milled for 120 h. Then, the Al and Al-SiC composites were pressed under 125 MPa and finally sintered at 450 °C. Moreover, microsize and combination between micro and nano sizes Al-SiC samples were prepared by the same way. The effect of the Al matrix, SiC reinforcement sizes and the SiC volume fraction on the microstructure evolution, physical and mechanical properties of the produced composites was investigated. The BM and powder metallurgy techniques followed by sintering produce fully dense Al-SiC composite samples with different matrix and reinforcement sizes. The SiC particle size was observed to have a higher effect on the thermal conductivity, electrical resistivity, and microhardness of the produced composites than that of the SiC volume fraction. The decreasing of the Al and SiC particle sizes and increasing of the SiC volume fraction deteriorate the physical properties. On the other hand, the microhardness was enhanced with the decreasing of the Al, SiC particle sizes and the increasing of the SiC volume fraction.


Materials ◽  
2005 ◽  
Author(s):  
C. S. Goh ◽  
J. Wei ◽  
M. Gupta

Magnesium nanocomposites with 0.1, 0.2, 0.3 and 0.4 volume percentages of MgO were synthesized using the powder metallurgy technique. The nanocomposite billets obtained were subsequently hot extruded at a temperature of 350 °C with an extrusion ratio of 20.25:1. The extruded nanocomposites were characterized for their microstructural, physical and mechanical properties. The microstructures of the nanocomposites showed individual particles of MgO uniformly distributed in the magnesium matrix. The thermomechanical analysis results revealed that a more thermally stable magnesium nanocomposite could be obtained with a threshold amount of MgO. The tensile properties results indicated that the yield strength peaks at 0.3 vol.% of reinforcement incorporated, with an improvement of approximately 17%. An attempt is made to correlate the volume fraction of the MgO with the resultant physical and mechanical properties of the magnesium nanocomposites.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4055-4064
Author(s):  
Muhammad Mansoor ◽  
Shaheed Khan ◽  
Amjad Ali ◽  
Khalid Mahmood Ghauri

Demand of special combination of different properties of the materials instigated the development of metal matrix composite. The carbon nanotubes being renowned for their excellent physical and mechanical properties are one of the major choices as strengthen material for metal matrix composites. To benefit their properties, the carbon nanotubes should be thoroughly dispersed and have wetting with the matrix. In the present study, a precursor of aluminum-carbon nanotubes was prepared by coating the nanotubes with titanium and used to fabricate the composite by induction melting. The precursor provided easy wetting, while induction melting facilitated dispersion of the nanotubes readily. Consequently, the composite exhibited noticeable augmentations in yield and tensile strength from 64 to 193 MPa and 81 to 227 MPa, respectively.


2012 ◽  
Vol 59 (2) ◽  
Author(s):  
Ahmad Aswad Mahaidin ◽  
Mohd Asri Selamat ◽  
Samsiah Abdul Manaf ◽  
Talib Ria Jaafar

The mechanical properties of WC-Co are highly dependent on its cobalt content, density and grain size of the WC particles. Addition of free carbon during the consolidation of process is said to improve the densification process and inhibit grain growth. However, there are still plenty of works needs to be done regarding this matter to support the fact. Therefore, this study is to evaluate the effect of carbon addition on the physical and mechanical properties of WC-Co-C sintered powders. The WC-Co-C sample is fabricated using powder metallurgy technique, in which the powders were uniaxially pressed at 625 MPa and cold-isostatic pressed at 200 MPa. Then, the sample is sintered in nitrogen-based atmosphere at temperature range of 1350-1450C. The physical and mechanical properties of the WC-Co sintered powders were analysed. It is found that WC-Co-C has a relatively higher density and hardness but exhibit lower transverse rupture strength compared to WC-Co.


Materials ◽  
2005 ◽  
Author(s):  
W. L. E. Wong ◽  
M. Gupta

In the present study, magnesium composites containing different amount of nano-size copper particulates were successfully synthesized using powder metallurgy technique coupled with a novel microwave assisted rapid sintering. Mg/Cu nanocomposites were sintered using a hybrid heating method consisting of microwaves and radiant heat from external susceptors. The sintered specimens were hot extruded and characterized in terms of microstructural, physical and mechanical properties. Microstructural characterization revealed minimal porosity and the presence of a continuous network of nano-size Cu particulates decorating the particle boundaries of the metal matrix. Mechanical characterization revealed that the addition of nano-size Cu particulates lead to an increase in hardness, 0.2% yield strength (YS) and ultimate tensile strength (UTS) of the matrix. An attempt is made in the present study to correlate the effect of increasing presence of nano-size Cu reinforcement on the microstructural, physical and mechanical properties of monolithic magnesium.


2006 ◽  
Vol 111 ◽  
pp. 179-182 ◽  
Author(s):  
C.S. Goh ◽  
Jun Wei ◽  
L.C. Lee ◽  
Manoj Gupta

In this study, both liquid and powder metallurgy techniques were employed to fabricate Mg nanocomposites. Comparisons were made on the physical and mechanical properties of Mg nanocomposites using these two different fabrication techniques. When similar weight fractions of carbon nanotubes (CNTs) were added to Mg using these two different techniques, the nanocomposites fabricated using powder metallurgy technique were found to be thermally more stable and has higher yield and tensile strengths than those produced using liquid metallurgy technique. The higher yield and tensile strengths were due to the presence of MgO particles which were pre-existent in the Mg powders. The MgO particles cause a hybrid reinforcement effect in the Mg-CNT nanocomposites, which surpasses the strengthening effect of the CNTs alone.


Sign in / Sign up

Export Citation Format

Share Document