scholarly journals Conversion of corn fiber into fuel ethanol

2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Vladimír Ondáš ◽  
Hana Novanská ◽  
Viera Horváthová

Corn fiber due to its chemical composition (up to 20% starch, 50 - 60% non-starch polysaccharides) and availability has potential to serve as a substrate for manufacture of various products, including fuel ethanol. This paper deals with assessment of fiber-to-ethanol conversion. The water/dry fiber ratio in suspensions was 10/1. Enzyme liquefaction and saccharification of residual starch in corn fiber was carried out in two steps with thermostable α-amylase (20 min, 120°C) and mixture of pullulanase and glucomalyse (24 hours, 60°C). Procedures resulted in release of 57.7±1.6 mg of glucose per gram of dry fiber basis. It responds to the dextrose equivalent expression to 96.7±2.2%. By fermentation of the starch hydrolysates by yeasts Saccharomyces cerevisiae CCY-11-3 (5% v/v inoculum, 28°C, 72 hours) 0.48 g of ethanol per gram of glucose in hydrolysates was obtained. The solids after starch hydrolysis were separated by filtration and processed by acid pretreatment (0.1 g of conc. HCl/g of biomass/5 ml of water, 120°C, 20 min) with subsequent enzyme hydrolysis (24 hours, 60°C) by the multienzyme preparations containing cellulases and hemicellulases. Overall yield of reducing sugars after these two steps was 740.7±3.9 mg/gram of dry corn fiber basis. Fermentation of lignocellulosic hydrolysates by yeasts Pichia stipitis CCY-39-50-1 and Candida shehatea CCY-29-68-4 (in both cases 5% v/v inoculum, 28°C, 72 hours) resulted in 0.38 and 0.12 g of ethanol per gram of reducing sugars. The results indicate that applied pretreatment methods and used microorganisms are able to produce ethanol from corn fiber.

2011 ◽  
Vol 347-353 ◽  
pp. 1228-1232
Author(s):  
Yi Qiu ◽  
Yong Hong Huang ◽  
Yu Kun Sun ◽  
Li Huang ◽  
Hao Cheng

Based on the introduction of the major problems in solid-state fermentation of straw to produce fuel ethanol and its development direction, this paper systematically discuss the process that currently used.Through analyzing the characteristics of all phases such as pretreatment, hydrolysis and fermentation and so on,we put forward a new kind of process scheme. In this process, we use a mixed method which combined dilute sulfuric acids with steam explosion pretreatment method, after water washing, adopt the method of synchronized saccharification solid-state fermentation,by adding pichia and cellulase enzyme hydrolysis,and we can get ethanol solution at the same time of enzyme hydrolysis. Then through filtered, purified, denatured and so on, at last, we get the fuel ethanol. The equipment that this process requires is simple, and its fermentation have high efficiency high and low energy consumption.


2005 ◽  
Vol 125 (2) ◽  
pp. 077-098 ◽  
Author(s):  
Nathan S. Mosier ◽  
Richard Hendrickson ◽  
Mark Brewer ◽  
Nancy Ho ◽  
Miroslav Sedlak ◽  
...  

2011 ◽  
Vol 102 (10) ◽  
pp. 5995-6004 ◽  
Author(s):  
David Van Eylen ◽  
Femke van Dongen ◽  
Mirjam Kabel ◽  
Jan de Bont

Author(s):  
Anuj Kumar Chandel ◽  
Mangamoori Lakshmi Narasu ◽  
Ravinder Rudravaram ◽  
Ravindra Pogaku ◽  
Linga Venkateswar Rao

In the present paper, parametric optimization studies were performed to determine the most influential range of process parameters for maximum ethanol production from Pichia stipitis NCIM3499 by one-at-a-time method under submerged fermentation conditions. Various parameters, such as agitation, pH of medium, temperature and different carbon sources, etc., were taken into consideration. The optimum values of these process parameters were as follows: agitation (200 rpm), pH (5.5), temperature (30°C), and semi-aerobic conditions (150 ml fermentation media in 250 ml Erlenmeyer flask). Among the different carbon substrates tested, glucose and xylose (20±0.21 g/l) showed same ethanol production (8.8±0.35 g/l) with a yield of 0.44±0.11g/g sugar utilized. These process parameters were applied for the ethanol production from de-oiled rice bran (DORB), the left over residue after extraction of oil. It was thermochemically saccharified using sulfuric acid (0.5-5.5% v/v) at 120°C for a fixed residence time of 1h. A maximum of 38.50±0.45 g/l total reducing sugars was obtained at 3.5% v/v H2SO4. This sugar syrup was detoxified by overliming with calcium hydroxide and subsequently fermented with P. stipitis NCIM3499 under the optimized conditions. After 72 h of incubation, DORB hydrolysate (33.50±0.44g/l total reducing sugars) showed maximum ethanol production (12.47±0.26g/l) with the yield 0.42±0.021g/g and fermentation efficiency of 81.74±0.55%. To the best of our knowledge, this is the first report on ethanol production from de-oiled rice bran using P. stipitis NCIM3499.


Sign in / Sign up

Export Citation Format

Share Document