scholarly journals Optimized Wireless Sensor Node Multidimensional Routing using Fuzzy Clustering and Chaotic Gravitational Search Algorithm

2021 ◽  
Vol 3 (1) ◽  
pp. 40-48
Author(s):  
Sivaganesan D

A network of tiny sensors located at various regions for sensing and transmitting information is termed as wireless sensor networks. The information from multiple network nodes reach the destination node or the base station where data processing is performed. In larger search spaces, the clustering mechanisms and routing solutions provided by the existing heuristic algorithms are often inefficient. The sensor node resources are depleted by un-optimized processes created by reduced routing and clustering optimization levels in large search spaces. Chaotic Gravitational Search Algorithm and Fuzzy based clustering schemes are used to overcome the limitations and challenges of the conventional routing systems. This enables effective routing and efficient clustering in large search spaces. In each cluster, among the available nodes, appropriate node is selected as the cluster head. Reduction in delay, increase in energy consumption, increase in network lifetime and improvement of the network clustering accuracy are evident from the simulation results.

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

The Chaotic Gravitational Search Algorithm (CGSA) is a physics-based heuristic algorithm inspired by Newton's law of universal gravitation. It uses 10 chaotic maps for optimal global search and fast convergence rate. The advantages of CGSA has been incorporated in various Mechanical and Civil engineering design frameworks which include Speed Reducer Design (SRD), Gear Train Design (GTD), Three Bar Truss Design (TBTD), Stepped Cantilever Beam Design (SCBD), Multiple Disc Clutch Brake Design (MDCBD), and Hydrodynamic Thrust Bearing Design (HTBD). The CGSA has been compared with eleven state of the art stochastic algorithms. In addition, a non-parametric statistical test namely the Signed Wilcoxon Rank-Sum test has been carried out at a 5% significance level to statistically validate the results. The simulation results indicate that CGSA shows efficient performance in terms of high convergence speed and minimization of the design parameter values as compared to other heuristic algorithms. The source codes are publicly available on Github i.e. https://github.com/SajadAHMAD1.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Seyed Reza Nabavi ◽  
Vahid Ostovari Moghadam ◽  
Mohammad Yahyaei Feriz Hendi ◽  
Amirhossein Ghasemi

With the development of various applications of wireless sensor networks, they have been widely used in different areas. These networks are established autonomously and easily in most environments without any infrastructure and collect information of environment phenomenon for proper performance and analysis of events and transmit them to the base stations. The wireless sensor networks are comprised of various sensor nodes that play the role of the sensor node and the relay node in relationship with each other. On the other hand, the lack of infrastructure in these networks constrains the sources such that the nodes are supplied by a battery of limited energy. Considering the establishment of the network in impassable areas, it is not possible to recharge or change the batteries. Thus, energy saving in these networks is an essential challenge. Considering that the energy consumption rate while sensing information and receiving information packets from another node is constant, the sensor nodes consume maximum energy while performing data transmission. Therefore, the routing methods try to reduce energy consumption based on organized approaches. One of the promising solutions for reducing energy consumption in wireless sensor networks is to cluster the nodes and select the cluster head based on the information transmission parameters such that the average energy consumption of the nodes is reduced and the network lifetime is increased. Thus, in this study, a novel optimization approach has been presented for clustering the wireless sensor networks using the multiobjective genetic algorithm and the gravitational search algorithm. The multiobjective genetic algorithm based on reducing the intracluster distances and reducing the energy consumption of the cluster nodes is used to select the cluster head, and the nearly optimal routing based on the gravitational search algorithm is used to transfer information between the cluster head nodes and the sink node. The implementation results show that considering the capabilities of the multiobjective genetic algorithm and the gravitational search algorithm, the proposed method has improved energy consumption, efficiency, data delivery rate, and information packet transmission rate compared to the previous methods.


Sign in / Sign up

Export Citation Format

Share Document