INVESTIGATION OF THE GROWTH AND DISSOLUTION OF THE OXIDE PHASE ON TITANIUM WHEN HEATING DURING ITS HIGH-TEMPERATURE TREATMENT

Author(s):  
И.Л. Батаронов ◽  
В.В. Пешков ◽  
В.Ф. Селиванов ◽  
В.В. Шурупов

Получение прочных диффузионно-сварных соединений поверхностно активных металлов связано с ростом и растворением оксидных пленок на контактных поверхностях. При этом процесс образования оксидов может протекать по различным механизмам. При высокотемпературном нагреве титановых сплавов при диффузионной сварке, реализуемой в вакууме, имеет место активное взаимодействие металла с остаточными газами вакуумированного пространства. Образующиеся оксидные пленки препятствуют физическому контакту и дальнейшему развитию качественного неразъемного соединения деталей. Ввиду быстротечности роста и растворения окислов на соединяемых поверхностях и невозможности в динамике количественно оценить их величину предложено физико-математическое моделирование процесса роста и растворения оксидов, позволяющее определить время и температуру нагрева поверхностей, при которых возможно приложение сварочного давления к контактным поверхностям, свободным от оксидов. Построенные на основе полученных математических выражений графики позволяют определить характер изменения толщины оксидной пленки. На основании анализа графических зависимостей установлено, что уменьшение толщины оксидов, вплоть до их практически окончательного удаления, зависит от скорости нагрева. При большей скорости нарастания температуры образуется меньший слой оксидов. Такая же ситуация прослеживается при увеличении степени вакуумирования в герметичной камере. Для практических задач установленные математические и графические данные позволяют определить технологические схемы и условия, при которых становится возможным сведение в контакт соединяемых поверхностей деталей из титана, когда их поверхности деблокированы от оксидов, что, в свою очередь, определяет качество и надежность диффузионно-сварного соединения The production of strong diffusion-welded joints of surfactants is associated with the growth and dissolution of oxide films on the contact surfaces. In this case, the process of formation of oxides can proceed by various mechanisms. At high-temperature heating of titanium alloys during diffusion welding, implemented in a vacuum, there is an active interaction of the metal with the residual gases of the evacuated space. The resulting oxide films prevent physical contact and the further development of a high-quality solid connection of parts. Due to the transience of the growth and dissolution of oxides on the connected surfaces and the inability to quantify their value in dynamics, we proposed a physical and mathematical modeling of the process of growth and dissolution of oxides, which allows us to determine the time and temperature of heating surfaces at which welding pressure can be applied to the contact surfaces free of oxides. Based on the analysis of graphical dependencies, we found that the reduction in the thickness of the oxides, up to their almost final removal, depends on the heating rate. At a higher rate of temperature rise, a smaller layer of oxides is formed. The same situation is observed when increasing the degree of vacuuming in a sealed chamber. For practical tasks, the established mathematical and graphical data allow us to determine the technological schemes and conditions under which it becomes possible to bring the connected surfaces of titanium parts into contact when their surfaces are unblocked from oxides, which, in turn, determines the quality and reliability of the diffusion-welded joint

2020 ◽  
Vol 225 ◽  
pp. 106862 ◽  
Author(s):  
Qingzhen Guo ◽  
Haijian Su ◽  
Jiawei Liu ◽  
Qian Yin ◽  
Hongwen Jing ◽  
...  

Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1695-1700 ◽  
Author(s):  
A. Murillo-Williams ◽  
G. P. Munkvold

Fusarium verticillioides causes seedling decay, stalk rot, ear rot, and mycotoxin contamination (primarily fumonisins) in maize. Systemic infection of maize plants by F. verticillioides can lead to kernel infection, but the frequency of this phenomenon has varied widely among experiments. Variation in the incidence of systemic infection has been attributed to environmental factors. In order to better understand the influence of environment, we investigated the effect of temperature on systemic development of F. verticillioides during vegetative and reproductive stages of plant development. Maize seeds were inoculated with a green fluorescent protein-expressing strain of F. verticillioides, and grown in growth chambers under three different temperature regimes. In the vegetative-stage and reproductive-stage experiments, plants were evaluated at tasseling (VT stage), and at physiological maturity (R6 stage), respectively. Independently of the temperature treatment, F. verticillioides was reisolated from nearly 100% of belowground plant tissues. Frequency of reisolation of the inoculated strain declined acropetally in aboveground internodes at all temperature regimes. At VT, the high-temperature treatment had the highest systemic development of F. verticillioides in aboveground tissues. At R6, incidence of systemic infection was greater at both the high- and low-temperature regimes than at the average-temperature regime. F. verticillioides was isolated from higher internodes in plants at R6, compared to stage VT. The seed-inoculated strain was recovered from kernels of mature plants, although incidence of kernel infection did not differ significantly among treatments. During the vegetative growth stages, temperature had a significant effect on systemic development of F. verticillioides in stalks. At R6, the fungus reached higher internodes in the high-temperature treatment, but temperature did not have an effect on the incidence of kernels (either symptomatic or asymptomatic) or ear peduncles infected with the inoculated strain. These results support the role of high temperatures in promoting systemic infection of maize by F. verticillioides, but plant-to-seed transmission may be limited by other environmental factors that interact with temperature during the reproductive stages.


1981 ◽  
Vol 23 (4) ◽  
pp. 265-267
Author(s):  
O. V. Abramov ◽  
A. I. Il'in ◽  
V. M. Kardonskii

2003 ◽  
Vol 10 (01) ◽  
pp. 55-63 ◽  
Author(s):  
M. DIANI ◽  
J. DIOURI ◽  
L. KUBLER ◽  
L. SIMON ◽  
D. AUBEL ◽  
...  

In 6H- or 4H-SiC(0001) surface technology, a Si-rich 3 × 3 reconstruction is usually first prepared by heating at 800°C under Si flux, and two other most stable [Formula: see text] or [Formula: see text] reconstructions are obtained by further extensive annealing at higher temperatures ranging between 900 and 1250°C. The 3 × 3 Si excess is thus progressively depleted up to a graphitized C-rich surface. By crystallographic (LEED) and chemical surface characterizations (XPS and UPS), we show that all these reconstructions can be obtained at a unique, low formation temperature of 800°C if the Si richness is controlled before annealing. This control is achieved by exposing the 3 × 3 surface to atomic hydrogen at room temperature. This procedure allows one to etch or partially deplete the (3 × 3)-associated Si excess, and make it more comparable to the final Si coverages, required to form the less Si-rich [Formula: see text] or [Formula: see text] reconstructions. After annealing at 800°C, the latter reconstructions are no longer determined by the heating time or temperature but only by the initial Si coverage set by the H doses inducing the low temperature etching. The high temperature treatment, required to remove by sublimation a significant Si amount associated with the Si-rich 3 × 3 reconstruction, is thus avoided. Such a methodology could be applied to other binary systems in the formation of reconstructions that depends on surface richness.


Sign in / Sign up

Export Citation Format

Share Document