scholarly journals Nanofluid Flow Comprising Gyrotactic Microorganisms through a Porous Medium

2020 ◽  
Vol 13 (05) ◽  
Filomat ◽  
2019 ◽  
Vol 33 (14) ◽  
pp. 4627-4653 ◽  
Author(s):  
Noor Khan

Mixed convection in magnetohydrodynamic second grade nanofluid flow through a porous medium containing nanoparticles and gyrotactic microorganisms with chemical reaction is considered. Buongiorno?s nanofluid model is used incorporating the buoyancy forces and Darcy-Forchheimer effect. Nanoparticles increase the thermal conduction in bioconvection flow and microorganisms simultaneously increase the stability of nanofluids. For the constructive (or generation) chemical reaction, the mass transfer displays an increasing behavior. Ordinary differential equations together with the boundary conditions are obtained through the similarity variables from the governing equations of the problem, which are solved by the Homotopy Analysis Method (HAM). The investigations are presented through graphs and the results are interpreted which depict the influences of all the embedded parameters.


2019 ◽  
Vol 8 (3) ◽  
pp. 5795-5802 ◽  

The main objective of this paper is to focus on a numerical study of viscous dissipation effect on the steady state flow of MHD Williamson nanofluid. A mathematical modeled which resembles the physical flow problem has been developed. By using an appropriate transformation, we converted the system of dimensional PDEs (nonlinear) into coupled dimensionless ODEs. The numerical solution of these modeled ordinary differential equations (ODEs) is achieved by utilizing shooting technique together with Adams-Bashforth Moulton method of order four. Finally, the results of discussed for different parameters through graphs and tables.


2021 ◽  
Vol 15 (1) ◽  
pp. 1013-1026
Author(s):  
M. M. Rashidi ◽  
M. T. Akolade ◽  
M. M. Awad ◽  
A. O. Ajibade ◽  
I. Rashidi

Author(s):  
Amina Manel Bouaziz ◽  
M.N. Bouaziz ◽  
A. Aziz

Free convective of nanofluid inside dispersive porous medium adjacent to a vertical plate under the effects of the zero mass nanoparticles flux condition and the thermal and solutal dispersions is studied. Buongiorno's model revised is used considering Darcy and non Darcy laminar flows, and isothermal or convective flux outer the wall. Dimensionless governing equations formulated using velocity, temperature, concentration and nanoparticle volume fraction have been solved by finite difference method that implements the 3-stage Lobatto collocation formula. The numerical data obtained with semi or full dispersions cases are compared to predictions made using the non dispersive porous medium. Taking into account the dispersions, the influence of the zero mass nanoparticles flux condition is examined to test the validity of the control active nanoparticle assumption. It is found mainly that the thermal transfers can reach more than 100% in connection with the case where of a semi-dispersion of the porous medium is applied. Realistic condition, i.e. zero mass flux should be addressed for the heat transfer rate rather than the mass transfer rate, discovered markedly different to the active condition. This signifies the importance of considering the zero nanoparticles mass flux and dispersions in the performance characterization of nanofluid flow in porous media.


Sign in / Sign up

Export Citation Format

Share Document