scholarly journals Mixed convection in mhd second grade nanofluid flow through a porous medium containing nanoparticles and gyrotactic microorganisms with chemical reaction

Filomat ◽  
2019 ◽  
Vol 33 (14) ◽  
pp. 4627-4653 ◽  
Author(s):  
Noor Khan

Mixed convection in magnetohydrodynamic second grade nanofluid flow through a porous medium containing nanoparticles and gyrotactic microorganisms with chemical reaction is considered. Buongiorno?s nanofluid model is used incorporating the buoyancy forces and Darcy-Forchheimer effect. Nanoparticles increase the thermal conduction in bioconvection flow and microorganisms simultaneously increase the stability of nanofluids. For the constructive (or generation) chemical reaction, the mass transfer displays an increasing behavior. Ordinary differential equations together with the boundary conditions are obtained through the similarity variables from the governing equations of the problem, which are solved by the Homotopy Analysis Method (HAM). The investigations are presented through graphs and the results are interpreted which depict the influences of all the embedded parameters.

Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 139 ◽  
Author(s):  
Noor Khan ◽  
Zahir Shah ◽  
Saeed Islam ◽  
Ilyas Khan ◽  
Tawfeeq Alkanhal ◽  
...  

Chemical reaction in mixed convection magnetohydrodynamic second grade nanoliquid thin film flow through a porous medium containing nanoparticles and gyrotactic microorganisms is considered with entropy generation. The stratification phenomena, heat and mass transfer simultaneously take place within system. Microorganisms are utilized to stabilize the suspended nanoparticles through bioconvection. For the chemical reaction of species, the mass transfer increases. The governing equations of the problem are transformed to nonlinear differential equations through similarity variables, which are solved through a well known scheme called homotopy analysis method. The solution is expressed through graphs and illustrations which show the influences of all the parameters. The residual error graphs elucidate the authentication of the present work.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gladys Tharapatla ◽  
Pamula Rajakumari ◽  
Ramana G.V. Reddy

Purpose This paper aims to analyze heat and mass transfer of magnetohydrodynamic (MHD) non-Newtonian fluids flow past an inclined thermally stratified porous plate using a numerical approach. Design/methodology/approach The flow equations are set up with the non-linear free convective term, thermal radiation, nanofluids and Soret–Dufour effects. Thus, the non-linear partial differential equations of the flow analysis were simplified by using similarity transformation to obtain non-linear coupled equations. The set of simplified equations are solved by using the spectral homotopy analysis method (SHAM) and the spectral relaxation method (SRM). SHAM uses the approach of Chebyshev pseudospectral alongside the homotopy analysis. The SRM uses the concept of Gauss-Seidel techniques to the linear system of equations. Findings Findings revealed that a large value of the non-linear convective parameters for both temperature and concentration increases the velocity profile. A large value of the Williamson term is detected to elevate the velocity plot, whereas the Casson parameter degenerates the velocity profile. The thermal radiation was found to elevate both velocity and temperature as its value increases. The imposed magnetic field was found to slow down the fluid velocity by originating the Lorentz force. Originality/value The novelty of this paper is to explore the heat and mass transfer effects on MHD non-Newtonian fluids flow through an inclined thermally-stratified porous medium. The model is formulated in an inclined plate and embedded in a thermally-stratified porous medium which to the best of the knowledge has not been explored before in literature. Two elegance spectral numerical techniques have been used in solving the modeled equations. Both SRM and SHAM were found to be accurate.


Heat Transfer ◽  
2021 ◽  
Author(s):  
Khaled Al‐Farhany ◽  
Mohammed A. Alomari ◽  
Ahmed Al‐Saadi ◽  
Ali Chamkha ◽  
Hakan F. Öztop ◽  
...  

2013 ◽  
Vol 8-9 ◽  
pp. 225-234
Author(s):  
Dalia Sabina Cimpean

The present study is focused on the mixed convection fluid flow through a porous medium, when a different amount of nanoparticles is added in the base fluid. The nanofluid saturates the porous matrix and different situations of the flow between two walls are presented and discussed. Alternatively mathematical models are presented and discussed. A solution of a system which contains the momentum, Darcy and energy equations, together with the boundary conditions involved, is given. The behavior of different nanofluids, such thatAu-water, Ag-waterandFe-wateris graphically illustrated and compared with the previous results.The research target is to observe the substantial increase of the thermophysical fluid properties, when the porous medium issaturated by a nanofluid instead of a classical Newtonian fluid.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Inayat Ullah ◽  
M. T. Rahim ◽  
Hamid Khan ◽  
Mubashir Qayyum

The aim of the present work is to analyze the magnetohydrodynamic (MHD) squeezing flow through porous medium using homotopy analysis method (HAM). Fourth-order boundary value problem is modeled through stream functionψ(r,z)and transformationψ(r,z)=r2f(z). Absolute residuals are used to check the efficiency and consistency of HAM. Other analytical techniques are compared with the present work. It is shown that results of good agreement can be obtained by choosing a suitable value of convergence control parameterhin the valid regionRh. The influence of different parameters on the flow is argued theoretically as well as graphically.


Sign in / Sign up

Export Citation Format

Share Document