scholarly journals Electromagnetic control based on Lie symmetry transformation

Author(s):  
Zheng Mingliang ◽  

An design method of electromagnetic metamaterial based on Lie symmetry of Maxwell's equation is proposed, which is applied to the modulation of electromagnetic wave / light. Firstly, the electromagnetic control model based on metamaterials is introduced, then according to the theory of Transformation Optics (TO), Lie symmetry analysis is applied to the coordinate transformation of material physical space, and the key core is the determining equations of Lie symmetry is derived. Secondly, the analytical forms of constitutive parameters (permittivity and permeability) of metamaterials are introduced, which can be used to design all kinds of electromagnetic metamaterials. Finally, the Lie symmetry method is applied to the control of electromagnetic beam width. The results show that the metamaterial based on Lie symmetry of Maxwell's equation have good field distribution, and it overcomes the single subjectivity of traditional coordinate transformation in optical transformation. The wave simulation by COMSOL Multiphysics software verify the correctness of Lie symmetry method.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Maria Ihsane El Bahi ◽  
Khalid Hilal

In this paper, the problem of constructing the Lie point symmetries group of the nonlinear partial differential equation appeared in mathematical physics known as the generalized KdV-Like equation is discussed. By using the Lie symmetry method for the generalized KdV-Like equation, the point symmetry operators are constructed and are used to reduce the equation to another fractional ordinary differential equation based on Erdélyi-Kober differential operator. The symmetries of this equation are also used to construct the conservation Laws by applying the new conservation theorem introduced by Ibragimov. Furthermore, another type of solutions is given by means of power series method and the convergence of the solutions is provided; also, some graphics of solutions are plotted in 3D.


2018 ◽  
Vol 32 (20) ◽  
pp. 1850234 ◽  
Author(s):  
A. H. Abdel Kader ◽  
M. S. Abdel Latif

In this paper, using Lie symmetry method, we obtain some new exact traveling wave solutions of the Camassa–Holm–Degasperis–Procesi (CH–DP) equation. Some new bright and dark soliton solutions are obtained. Also, some new doubly periodic solutions in the form of Jacobi elliptic functions and Weierstrass elliptic functions are obtained.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Lamine Thiam ◽  
Xi-zhong Liu

The residual symmetry of a (1 + 1)-dimensional nonlinear evolution equation (NLEE) ut+uxxx−6u2ux+6λux=0 is obtained through Painlevé expansion. By introducing a new dependent variable, the residual symmetry is localized into Lie point symmetry in an enlarged system, and the related symmetry reduction solutions are obtained using the standard Lie symmetry method. Furthermore, the (1 + 1)-dimensional NLEE equation is proved to be integrable in the sense of having a consistent Riccati expansion (CRE), and some new Bäcklund transformations (BTs) are given. In addition, some explicitly expressed solutions including interaction solutions between soliton and cnoidal waves are derived from these BTs.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mehdi Nadjafikhah ◽  
Mostafa Hesamiarshad

Lie symmetry method is performed for the nonlinear Jaulent-Miodek equation. We will find the symmetry group and optimal systems of Lie subalgebras. The Lie invariants associated with the symmetry generators as well as the corresponding similarity reduced equations are also pointed out. And conservation laws of the J-M equation are presented with two steps: firstly, finding multipliers for computation of conservation laws and, secondly, symbolic computation of conservation laws will be applied.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Mehdi Nadjafikhah ◽  
Vahid Shirvani-Sh

The Lie symmetry method is performed for the fifth-order nonlinear evolution Kudryashov-Sinelshchikov equation. We will find ones and two-dimensional optimal systems of Lie subalgebras. Furthermore, preliminary classification of its group-invariant solutions is investigated.


2019 ◽  
Vol 27 (2) ◽  
pp. 171-185 ◽  
Author(s):  
Astha Chauhan ◽  
Rajan Arora

AbstractIn this work, the fractional Lie symmetry method is applied for symmetry analysis of time fractional Kupershmidt equation. Using the Lie symmetry method, the symmetry generators for time fractional Kupershmidt equation are obtained with Riemann-Liouville fractional derivative. With the help of symmetry generators, the fractional partial differential equation is reduced into the fractional ordinary differential equation using Erdélyi-Kober fractional differential operator. The conservation laws are determined for the time fractional Kupershmidt equation with the help of new conservation theorem and fractional Noether operators. The explicit analytic solutions of fractional Kupershmidt equation are obtained using the power series method. Also, the convergence of the power series solutions is discussed by using the implicit function theorem.


2018 ◽  
Vol 32 (31) ◽  
pp. 1850383 ◽  
Author(s):  
Xuan Zhou ◽  
Wenrui Shan ◽  
Zhilei Niu ◽  
Pengcheng Xiao ◽  
Ying Wang

In this study, the Lie symmetry method is used to perform detailed analysis on the modified Zakharov–Kuznetsov equation. We have obtained the infinitesimal generators, commutator table of Lie algebra and symmetry group. In addition to that, optimal system of one-dimensional subalgebras up to conjugacy is derived and used to construct distinct exact solutions. These solutions describe the dynamics of nonlinear waves in isothermal multicomponent magnetized plasmas.


Author(s):  
Sudao Bilige ◽  
Yanqing Han

Purpose The purpose of this paper is to study the applications of Lie symmetry method on the boundary value problem (BVP) for nonlinear partial differential equations (PDEs) in fluid mechanics. Design/methodology/approach The authors solved a BVP for nonlinear PDEs in fluid mechanics based on the effective combination of the symmetry, homotopy perturbation and Runge–Kutta methods. Findings First, the multi-parameter symmetry of the given BVP for nonlinear PDEs is determined based on differential characteristic set algorithm. Second, BVP for nonlinear PDEs is reduced to an initial value problem of the original differential equation by using the symmetry method. Finally, the approximate and numerical solutions of the initial value problem of the original differential equations are obtained using the homotopy perturbation and Runge–Kutta methods, respectively. By comparing the numerical solutions with the approximate solutions, the study verified that the approximate solutions converge to the numerical solutions. Originality/value The application of the Lie symmetry method in the BVP for nonlinear PDEs in fluid mechanics is an excellent and new topic for further research. In this paper, the authors solved BVP for nonlinear PDEs by using the Lie symmetry method. The study considered that the boundary conditions are the arbitrary functions Bi(x)(i = 1,2,3,4), which are determined according to the invariance of the boundary conditions under a multi-parameter Lie group of transformations. It is different from others’ research. In addition, this investigation will also effectively popularize the range of application and advance the efficiency of the Lie symmetry method.


Sign in / Sign up

Export Citation Format

Share Document