symmetry generators
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Yorgo Pano ◽  
Sabrina Pasterski ◽  
Andrea Puhm

Abstract Celestial diamonds encode the global conformal multiplets of the conformally soft sector, elucidating the role of soft theorems, symmetry generators and Goldstone modes. Upon adding supersymmetry they stack into a pyramid. Here we treat the soft charges associated to the fermionic layers that tie this structure together. This extends the analysis of conformally soft currents for photons and gravitons which have been shown to generate asymptotic symmetries in gauge theory and gravity to infinite-dimensional fermionic symmetries. We construct fermionic charge operators in 2D celestial CFT from a suitable inner product between 4D bulk field operators and spin s = $$ \frac{1}{2} $$ 1 2 and $$ \frac{3}{2} $$ 3 2 conformal primary wavefunctions with definite SL(2, ℂ) conformal dimension ∆ and spin J where |J| ≤ s. The generator for large supersymmetry transformations is identified as the conformally soft gravitino primary operator with ∆ = $$ \frac{1}{2} $$ 1 2 and its shadow with ∆ = $$ \frac{3}{2} $$ 3 2 which form the left and right corners of the celestial gravitino diamond. We continue this analysis to the subleading soft gravitino and soft photino which are captured by degenerate celestial diamonds. Despite the absence of a gauge symmetry in these cases, they give rise to conformally soft factorization theorems in celestial amplitudes and complete the celestial pyramid.


Author(s):  
M. Sharif ◽  
M. Zeeshan Gul

This paper investigates the geometry of compact stellar objects via Noether symmetry strategy in the framework of curvature-matter coupled gravity. For this purpose, we assume the specific model of this theory to evaluate Noether equations, symmetry generators and corresponding conserved parameters. We use conserved parameters to examine some fascinating attributes of the compact objects for suitable values of the model parameters. It is analyzed that compact objects in this theory depend on the conserved quantities and model parameters. We find that the obtained solutions provide the viability of this process as they are compatible with the astrophysical data.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
M. Cvetič ◽  
C. N. Pope ◽  
A. Saha

Abstract We present a construction of the most general BPS black holes of STU supergravity ($$ \mathcal{N} $$ N = 2 supersymmetric D = 4 supergravity coupled to three vector super-multiplets) with arbitrary asymptotic values of the scalar fields. These solutions are obtained by acting with a subset of the global symmetry generators on STU BPS black holes with zero values of the asymptotic scalars, both in the U-duality and the heterotic frame. The solutions are parameterized by fourteen parameters: four electric and four magnetic charges, and the asymptotic values of the six scalar fields. We also present BPS black hole solutions of a consistently truncated STU supergravity, which are parameterized by two electric and two magnetic charges and two scalar fields. These latter solutions are significantly simplified, and are very suitable for further explicit studies. We also explore a conformal inversion symmetry of the Couch-Torrence type, which maps any member of the fourteen-parameter family of BPS black holes to another member of the family. Furthermore, these solutions are expected to be valuable in the studies of various swampland conjectures in the moduli space of string compactifications.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Khudija Bibi ◽  
Khalil Ahmad

In this article, new exact solutions of 2 + 1 -dimensional Date Jimbo Kashiwara Miwa (DJKM) equation are constructed by applying the Lie symmetry method. By considering similarity variables obtained through Lie symmetry generators, considered 2 + 1 -dimensional DJKM equation is transformed into a linear partial differential equation with reduction of one independent variable. Afterwards by using Lie symmetry generators of this linear PDE, different invariant solutions involving exponential and logarithmic functions are explored which lead to the new exact solutions of the DJKM equation. Graphical representations of the obtained solutions are also presented to show the significance of the current work.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Monica Guica

It has been recently shown that classical J\bar TJT‾ - deformed CFTs possess an infinite-dimensional Witt-Kac-Moody symmetry, generated by certain field-dependent coordinate and gauge transformations. On a cylinder, however, the equal spacing of the descendants’ energies predicted by such a symmetry algebra is inconsistent with the known finite-size spectrum of J\bar TJT‾ - deformed CFTs. Also, the associated quantum symmetry generators do not have a proper action on the Hilbert space. In this article, we resolve this tension by finding a new set of (classical) conserved charges, whose action is consistent with semiclassical quantization, and which are related to the previous symmetry generators by a type of energy-dependent spectral flow. The previous inconsistency between the algebra and the spectrum is resolved because the energy operator does not belong to the spectrally flowed sector.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Evgeny Ivanov ◽  
Armen Nersessian ◽  
Stepan Sidorov

Abstract We study quantum properties of SU(2|1) supersymmetric (deformed $$ \mathcal{N} $$ N = 4, d = 1 supersymmetric) extension of the superintegrable Smorodinsky-Winternitz system on a complex Euclidian space ℂN. The full set of wave functions is constructed and the energy spectrum is calculated. It is shown that SU(2|1) supersymmetry implies the bosonic and fermionic states to belong to separate energy levels, thus exhibiting the “even-odd” splitting of the spectra. The superextended hidden symmetry operators are also defined and their action on SU(2|1) multiplets of the wave functions is given. An equivalent description of the same system in terms of superconformal SU(2|1, 1) quantum mechanics is considered and a new representation of the hidden symmetry generators in terms of the SU(2|1, 1) ones is found.


Author(s):  
Bjorn K. Berntson ◽  
◽  
Ernest G. Kalnins ◽  
Willard Miller ◽  
◽  
...  

We make significant progress toward the classification of 2nd order superintegrable systems on 3-dimensional conformally flat space that have functionally linearly dependent (FLD) symmetry generators, with special emphasis on complex Euclidean space. The symmetries for these systems are linearly dependent only when the coefficients are allowed to depend on the spatial coordinates. The Calogero-Moser system with 3 bodies on a line and 2-parameter rational potential is the best known example of an FLD superintegrable system. We work out the structure theory for these FLD systems on 3D conformally flat space and show, for example, that they always admit a 1st order symmetry. A partial classification of FLD systems on complex 3D Euclidean space is given. This is part of a project to classify all 3D 2nd order superintegrable systems on conformally flat spaces.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2167
Author(s):  
Paola Morando ◽  
Concepción Muriel ◽  
Adrián Ruiz

The construction of first integrals for SL(2,R)-invariant nth-order ordinary differential equations is a non-trivial problem due to the nonsolvability of the underlying symmetry algebra sl(2,R). Firstly, we provide for n=2 an explicit expression for two non-constant first integrals through algebraic operations involving the symmetry generators of sl(2,R), and without any kind of integration. Moreover, although there are cases when the two first integrals are functionally independent, it is proved that a second functionally independent first integral arises by a single quadrature. This result is extended for n>2, provided that a solvable structure for an integrable distribution generated by the differential operator associated to the equation and one of the prolonged symmetry generators of sl(2,R) is known. Several examples illustrate the procedures.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
H. Adami ◽  
M.M. Sheikh-Jabbari ◽  
V. Taghiloo ◽  
H. Yavartanoo ◽  
C. Zwikel

Abstract We carry out in full generality and without fixing specific boundary conditions, the symmetry and charge analysis near a generic null surface for two and three dimensional (2d and 3d) gravity theories. In 2d and 3d there are respectively two and three charges which are generic functions over the codimension one null surface. The integrability of charges and their algebra depend on the state-dependence of symmetry generators which is a priori not specified. We establish the existence of infinitely many choices that render the surface charges integrable. We show that there is a choice, the “fundamental basis”, where the null boundary symmetry algebra is the Heisenberg⊕Diff(d − 2) algebra. We expect this result to be true for d > 3 when there is no Bondi news through the null surface.


Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 65 ◽  
Author(s):  
Manuel Hohmann ◽  
Christian Pfeifer ◽  
Nicoleta Voicu

Applying the cosmological principle to Finsler spacetimes, we identify the Lie Algebra of symmetry generators of spatially homogeneous and isotropic Finsler geometries, thus generalising Friedmann-Lemaître-Robertson-Walker geometry. In particular, we find the most general spatially homogeneous and isotropic Berwald spacetimes, which are Finsler spacetimes that can be regarded as closest to pseudo-Riemannian geometry. They are defined by a Finsler Lagrangian built from a zero-homogeneous function on the tangent bundle, which encodes the velocity dependence of the Finsler Lagrangian in a very specific way. The obtained cosmological Berwald geometries are candidates for the description of the geometry of the universe, when they are obtained as solutions from a Finsler gravity equation.


Sign in / Sign up

Export Citation Format

Share Document