Lie symmetry analysis and some exact solutions for modified Zakharov–Kuznetsov equation

2018 ◽  
Vol 32 (31) ◽  
pp. 1850383 ◽  
Author(s):  
Xuan Zhou ◽  
Wenrui Shan ◽  
Zhilei Niu ◽  
Pengcheng Xiao ◽  
Ying Wang

In this study, the Lie symmetry method is used to perform detailed analysis on the modified Zakharov–Kuznetsov equation. We have obtained the infinitesimal generators, commutator table of Lie algebra and symmetry group. In addition to that, optimal system of one-dimensional subalgebras up to conjugacy is derived and used to construct distinct exact solutions. These solutions describe the dynamics of nonlinear waves in isothermal multicomponent magnetized plasmas.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Mehdi Nadjafikhah ◽  
Mostafa Hesamiarshad

Lie symmetry method is performed for the nonlinear Jaulent-Miodek equation. We will find the symmetry group and optimal systems of Lie subalgebras. The Lie invariants associated with the symmetry generators as well as the corresponding similarity reduced equations are also pointed out. And conservation laws of the J-M equation are presented with two steps: firstly, finding multipliers for computation of conservation laws and, secondly, symbolic computation of conservation laws will be applied.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Mehdi Nadjafikhah ◽  
Vahid Shirvani-Sh

The Lie symmetry method is performed for the fifth-order nonlinear evolution Kudryashov-Sinelshchikov equation. We will find ones and two-dimensional optimal systems of Lie subalgebras. Furthermore, preliminary classification of its group-invariant solutions is investigated.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 97 ◽  
Author(s):  
Ben Gao ◽  
Yao Zhang

In this paper, Lie symmetry analysis is presented for the (3 + 1)-dimensional BKP-Boussinesq equation, which seriously affects the dispersion relation and the phase shift. To start with, we derive the Lie point symmetry and construct the optimal system of one-dimensional subalgebras. Moreover, according to the optimal system, similarity reductions are investigated and we obtain exact solutions of reduced equations by means of the Tanh method. In the end, we establish conservation laws using Ibragimov’s approach.


2018 ◽  
Vol 40 (3) ◽  
pp. 251-264
Author(s):  
Dao Huy Bich ◽  
Nguyen Dang Bich

This paper presents a methodology to find the exact solution and respective parametric conditions to the Duffing-Van der Pol class of equations. The supposed method in this paper is different from the Prelle and Singer method and the Lie symmetry method. The main idea of the supposed method is implemented in finding the first integrals of the original equation and leading this equation to a solved equation of lower order to which the exact solution can be obtained. As results the parametric conditions and the exact solutions in parametric forms are indicated. The algorithm for determining integral constants and the investigation of solution characteristics are considered.


2018 ◽  
Vol 15 (08) ◽  
pp. 1850125 ◽  
Author(s):  
Vishakha Jadaun ◽  
Sachin Kumar

Based on Lie symmetry analysis, we study nonlinear waves in fluid mechanics with strong spatial dispersion. The similarity reductions and exact solutions are obtained based on the optimal system and power series method. We obtain the infinitesimal generators, commutator table of Lie algebra, symmetry group and similarity reductions for the [Formula: see text]-dimensional Kadomtsev–Petviashvili equation. For different Lie algebra, Lie symmetry method reduces Kadomtsev–Petviashvili equation into various ordinary differential equations (ODEs). Some of the solutions of [Formula: see text]-dimensional Kadomtsev–Petviashvili equation are of the forms — traveling waves, Weierstrass’s elliptic and Zeta functions and exponential functions.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Isaiah Elvis Mhlanga ◽  
Chaudry Masood Khalique

We study two coupled systems of nonlinear partial differential equations, namely, generalized Boussinesq-Burgers equations and (2+1)-dimensional Davey-Stewartson equations. The Lie symmetry method is utilized to obtain exact solutions of the generalized Boussinesq-Burgers equations. The travelling wave hypothesis approach is used to find exact solutions of the (2+1)-dimensional Davey-Stewartson equations.


2021 ◽  
Author(s):  
Xi-zhong Liu ◽  
Jun Yu

Abstract A nonlocal Boussinesq equation is deduced from the local one by using consistent correlated bang method. To study various exact solutions of the nonlocal Boussinesq equation, it is converted into two local equations which contain the local Boussinesq equation. From the N-soliton solutions of the local Boussinesq equation, the N-soliton solutions of the nonlocal Boussinesq equation are obtained, among which the (N = 2, 3, 4)-soliton solutions are analyzed with graphs. Some periodic and traveling solutions of the nonlocal Boussinesq equation are derived directly from known solutions of the local Boussinesq equation. Symmetry reduction solutions of the nonlocal Boussinesq equation are also obtained by using the classical Lie symmetry method.


2020 ◽  
Vol 17 (12) ◽  
pp. 2050173 ◽  
Author(s):  
Abdullahi Yusuf

The equation for fluid flow in porous media is analyzed in this paper with the aid of Lie symmetry method (LSM) and invariant subspace method (ISM). Infinitesimal generators, the entire geometric fields of the vectors and the symmetry groups of the equation being considered are given. One-dimensional optimal systems of sub-algebra are reported with corresponding reduced nonlinear ordinary differential equations. By means of ISM, we determine the exact solutions and invariant subspaces (ISs) for the equation under consideration. Moreover, with the aid of the new theorem of conservation, we establish the conservation laws (CLs) for the governing equation. The construction of the conserved vectors reveals the integrability and existence of soliton solutions of the equation for fluid flow in porous media.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Khadijo Rashid Adem ◽  
Chaudry Masood Khalique

Lie symmetry analysis is performed on a generalized two-dimensional nonlinear Kadomtsev-Petviashvili-modified equal width equation. The symmetries and adjoint representations for this equation are given and an optimal system of one-dimensional subalgebras is derived. The similarity reductions and exact solutions with the aid ofG′/G-expansion method are obtained based on the optimal systems of one-dimensional subalgebras. Finally conservation laws are constructed by using the multiplier method.


2016 ◽  
Vol 30 (28n29) ◽  
pp. 1640001 ◽  
Author(s):  
Abdullahi Rashid Adem

We consider a (2+1)-dimensional Korteweg–de Vries type equation which models the shallow-water waves, surface and internal waves. In the analysis, we use the Lie symmetry method and the multiple exp-function method. Furthermore, conservation laws are computed using the multiplier method.


Sign in / Sign up

Export Citation Format

Share Document