scholarly journals Optimisation of FSP process parameters of surface composites using GRA and Taguchi approach

Author(s):  
Ravi Butola ◽  
◽  
Ravi Kumar ◽  
Naman Choudhary ◽  
Mohammad Zubair ◽  
...  

Friction stir processing (FSP) of Al7075-T6 and Boron Carbide(𝐵4𝐶) nanoparticles as reinforcement were performed adopting Taguchi’s 𝐿9 orthogonal array. Optimisation of parameters which are transverse speed (TS), tool rotational speed (TRS), and tool pin profile (TP) based on residual stress and microhardness was done using Taguchi and Grey Relational Analysis (GRA). Result showed that minimum compressive residual stress and maximum microhardness were obtained at TS of 40 mm/min, TRS of 1200 rpm, and square tool pin profile. Analysis of variance showed that TP+TS with 49.63% contribution is the most significant factor to influence residual stress and microhardness.

2021 ◽  
Vol 13 (2) ◽  
pp. 21-30
Author(s):  
C. CHANAKYAN ◽  
S. SIVASANKAR ◽  
M. MEIGNANAMOORTHY ◽  
S. V. ALAGARSAMY

The Friction stir processing benefits of aluminium composites contain advanced exploration in the region of aluminium alloy Friction Stir Welding - FSW. The modern advancements in Friction Stir Welding are concentrated on the optimization of welding parameters for multi response attributes. The investigations were carried out with the tool pin profiles, tool rotational speed and traverse speed as predictable process parameters for multi response optimization in Friction Stir Welding of 5052 aluminium alloy. GRG (grey relational grade) was obtained by the grey relational analysis of the friction stir welding process through different qualities, particularly, UTS-ultimate tensile strength and micro hardness. The significant process variables on GRG and most substantial parameters traverse speed and tool pin profiles are examined by ANOVA. Excluding tool rotational speed, tool pin profiles and traverse speed were likewise observed to be significant. To approve the investigation, verification of tests was completed at optimal parameters arrangement and predicted outcomes were observed to be in great concurrence with test values.


2014 ◽  
Vol 592-594 ◽  
pp. 234-239 ◽  
Author(s):  
A. Thangarasu ◽  
N. Murugan ◽  
I. Dinaharan ◽  
S.J. Vijay

Friction stir processing (FSP) is as a novel modifying technique to synthesize surface composites. An attempt has been made to synthesis AA6082/TiC surface composite using FSP and to analyze the effect of tool rotational speed on microstructure and microhardness of the same. The tool rotational speed was varied from 800 rpm to 1600 rpm in steps of 400 rpm. The traverse speed, axial force, groove width and tool pin profile were kept constant. Scanning electron microscopy was employed to study the microstructure of the fabricated surface composites. The results indicated that the tool rotational speed significantly influenced the area of the surface composite and distribution of TiC particles. Higher rotational speed provided homogenous distribution of TiC particles while lower rotational speed caused poor distribution of TiC particles in the surface composite. The effect of the tool rotational speed on microhardness is also reported in this paper.


Author(s):  
Laxmana Raju Salavaravu ◽  
Lingaraju Dumpala

Submerged friction stir welding (FSW) is used to improve the weld zones mechanical properties in the present study. This research aims to obtain the optimized process parameters used to fabricate the AA6063 Submerged FSW joint. In the Submerged FSW process, the most important influential factors are tool rotational speed, traverse speed, and pin profile in a seawater environment. The different workpieces are friction stir welded while submerged in seawater at different tool rotational speeds, traverse speeds, and tool pin profiles such as square pin, cylindrical taper pin, and threaded pin. The produced weldments were tested for the mechanical properties of higher tensile strength, microhardness, corrosion rate, and the microstructure of weldments was characterized by using a scanning electron microscope, transmission electron microscope, and X-ray diffractometer. The corrosion rate is investigated by using an electrochemical analyzer by potential dynamic polarization open-circuit technique. For this investigation, The Taguchi method with the L9 orthogonal array design of experimentation is adopted. The maximum UTS was acquired in the weld joint fabricated with 1250 r/min of tool rotational speed, 45 mm/min traverse speed, and a square tool pin. The stirred zone is tested for microhardness. High hardness is achieved with high tool rotational speed and low traverse speed with a square tool pin profile. The corrosion rate is also decreased with high tool rotational speed, low traverse speed, and a square tool pin profile.


Author(s):  
Laxmanaraju salavaravu ◽  
◽  
Lingaraju Dumpala ◽  

Friction stir welding (FSW) can be made to improve the mechanical properties in the weld zone. This article aims to obtain the optimum FSW process parameters used for two plates of AA5083 welded joints. The significant factors in the FSW process are tool rotational speed(TRS), tool transverse speed(TTS), and the weld process conditions are Submerged FSW and Normal FSW. For doing the investigation, the Taguchi method L18 orthogonal array design of experimentation is utilized. Using the Grey Relational Analysis(GRA) to calculate the grey relation grade, the response parameters are tensile strength, microhardness, and surface roughness. The Optimum process parameters contain been recognized, and ANOVA controls the significant contribution of process parameters. The optimal FSW process parameters are used to maximize the FSW joint strength. It is identified in the condition of Submerged FSW, high tool rotational speed, and low TTS.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bhanodaya Kiran Babu Nadikudi

Purpose The main purpose of the present work is to study the multi response optimization of dissimilar friction stir welding (FSW) process parameters using Taguchi-based grey relational analysis and desirability function approach (DFA). Design/methodology/approach The welded sheets were fabricated as per Taguchi orthogonal array design. The effects of tool rotational speed, transverse speed and tool tilt angle process parameters on ultimate tensile strength and hardness were analyzed using grey relational analysis, and DFA and optimum parameters combination was determined. Findings The tensile strength and hardness values were evaluated from the welded joints. The optimum values of process parameters were estimated through grey relational analysis and DFA methods. Similar kind of optimum levels of process parameters were obtained through two optimization approaches as tool rotational speed of 1150 rpm, transverse speed of 24 mm/min and tool tilt angle of 2° are the best process parameters combination for maximizing both the tensile strength and hardness. Through these studies, it was confirmed that grey relational analysis and DFA methods can be used to find the multi response optimum values of FSW process parameters. Research limitations/implications In the present study, the FSW is performed with L9 orthogonal array design with three process parameters such as tool rotational speed, transverse speed and tilt angle and three levels. Practical implications Aluminium alloys are widely using in automotive and aerospace industries due to holding a high strength to weight property. Originality/value Very limited work had been carried out on multi objective optimization techniques such as grey relational analysis and DFA on friction stir welded joints made with dissimilar aluminium alloys sheets.


Sign in / Sign up

Export Citation Format

Share Document