Upper thermal tolerance differs across life stages in Trinidadian guppies (Poecilia reticulata)

2021 ◽  
Author(s):  
Brianna Bourne
2019 ◽  
Author(s):  
Timothy M. Healy ◽  
Antonia K. Bock ◽  
Ronald S. Burton

AbstractIn response to rapid environmental change, organisms rely on both genetic adaptation and phenotypic plasticity to adjust key traits that are necessary for survival and reproduction. Given the accelerating rate of climate change, plasticity may be particularly important. For organisms in warming aquatic habitats, upper thermal tolerance is likely to be a key trait, and many organisms express plasticity in this trait in response to developmental or adulthood temperatures. Although plasticity at one life stage may influence plasticity at another life stage, relatively little is known about these interactive effects for thermal tolerance. Here we used locally adapted populations of the intertidal copepod Tigriopus californicus to investigate these interactions in a marine ectotherm. We found that low latitude populations had greater critical thermal maxima (CTmax) than high latitude populations, and variation in developmental temperature altered CTmax plasticity in adulthood. After development at 25°C, CTmax was plastic in adults, whereas no adult plasticity in this trait was observed after 20°C development. This pattern was identical across four populations, suggesting that local thermal adaptation has not shaped this interactive effect. However, differences in the capacities to maintain ATP synthesis rates and to induce heat shock proteins at high temperatures, two likely mechanisms of local adaptation in this species, were consistent with changes in CTmax due to developmental temperatures, suggesting there is mechanistic overlap between plastic interactions and adaptation in general. These results indicate that interactive effects of plasticity across life stages may have substantial impacts on upper thermal tolerance in ectothermic organisms.Summary statementDevelopmental temperatures alter the plasticity of thermal limits in adults of a marine ectotherm, and differences in ATP synthesis rate and heat shock protein expression parallel the changes in tolerance.


2021 ◽  
Vol 96 ◽  
pp. 102856
Author(s):  
Marco Katzenberger ◽  
Helder Duarte ◽  
Rick Relyea ◽  
Juan Francisco Beltrán ◽  
Miguel Tejedo

2021 ◽  
pp. 103022
Author(s):  
Sonya K. Auer ◽  
Emily Agreda ◽  
Angela Chen ◽  
Madiha Irshad ◽  
Julia Solowey

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
J. J. H. Nati ◽  
M. B. S. Svendsen ◽  
S. Marras ◽  
S. S. Killen ◽  
J. F. Steffensen ◽  
...  

AbstractHow ectothermic animals will cope with global warming is a critical determinant of the ecological impacts of climate change. There has been extensive study of upper thermal tolerance limits among fish species but how intraspecific variation in tolerance may be affected by habitat characteristics and evolutionary history has not been considered. Intraspecific variation is a primary determinant of species vulnerability to climate change, with implications for global patterns of impacts of ongoing warming. Using published critical thermal maximum (CTmax) data on 203 fish species, we found that intraspecific variation in upper thermal tolerance varies according to a species’ latitude and evolutionary history. Overall, tropical species show a lower intraspecific variation in thermal tolerance than temperate species. Notably, freshwater tropical species have a lower variation in tolerance than freshwater temperate species, which implies increased vulnerability to impacts of thermal stress. The extent of variation in CTmax among fish species has a strong phylogenetic signal, which may indicate a constraint on evolvability to rising temperatures in tropical fishes. That is, in addition to living closer to their upper thermal limits, tropical species may have higher sensitivity and lower adaptability to global warming compared to temperate counterparts. This is evidence that freshwater tropical fish communities, worldwide, are especially vulnerable to ongoing climate change.


Science ◽  
2020 ◽  
Vol 369 (6499) ◽  
pp. 65-70 ◽  
Author(s):  
Flemming T. Dahlke ◽  
Sylke Wohlrab ◽  
Martin Butzin ◽  
Hans-Otto Pörtner

Species’ vulnerability to climate change depends on the most temperature-sensitive life stages, but for major animal groups such as fish, life cycle bottlenecks are often not clearly defined. We used observational, experimental, and phylogenetic data to assess stage-specific thermal tolerance metrics for 694 marine and freshwater fish species from all climate zones. Our analysis shows that spawning adults and embryos consistently have narrower tolerance ranges than larvae and nonreproductive adults and are most vulnerable to climate warming. The sequence of stage-specific thermal tolerance corresponds with the oxygen-limitation hypothesis, suggesting a mechanistic link between ontogenetic changes in cardiorespiratory (aerobic) capacity and tolerance to temperature extremes. A logarithmic inverse correlation between the temperature dependence of physiological rates (development and oxygen consumption) and thermal tolerance range is proposed to reflect a fundamental, energetic trade-off in thermal adaptation. Scenario-based climate projections considering the most critical life stages (spawners and embryos) clearly identify the temperature requirements for reproduction as a critical bottleneck in the life cycle of fish. By 2100, depending on the Shared Socioeconomic Pathway (SSP) scenario followed, the percentages of species potentially affected by water temperatures exceeding their tolerance limit for reproduction range from ~10% (SSP 1–1.9) to ~60% (SSP 5–8.5). Efforts to meet ambitious climate targets (SSP 1–1.9) could therefore benefit many fish species and people who depend on healthy fish stocks.


Sign in / Sign up

Export Citation Format

Share Document