Invasive exotic plant monitoring in Capitol Reef National Park: 2019 field season, Scenic Drive and Cathedral Valley Road

2021 ◽  
Author(s):  
Kristina Fehey ◽  
Dustin Perkins

Invasive exotic plant (IEP) species are a significant threat to natural ecosystem integrity and biodiversity, and controlling them is a high priority for the National Park Service. The North-ern Colorado Plateau Network (NCPN) selected the early detection of IEPs as one of 11 monitoring protocols to be implemented as part of its long-term monitoring program. From May 30 to June 1, 2019, network staff conducted surveys for priority IEP species along the Scenic Drive and Cathedral Valley Road monitoring routes at Capitol Reef National Park. We detected 119 patches of six priority IEP species along 34 kilometers of the two monitor-ing routes. There were more patches of IEPs, and a higher percentage of large patches, than in previous years. This indicates that previously identified infestations have expanded and grown. The most common (47.1%) patch size among priority species was 1,000–2,000 m2 (0.25–0.5 acre). The vast majority (93.2%) of priority patches ranked either low (58.8%) or very low (34.4%) on the patch management index scale. Tamarisk (Tamarix sp., 72 patches) was the most prevalent priority IEP species. African mustard (Malcolmia africana, 32 patch-es), field bindweed (Convolvulus arvensis, 9 patches), and Russian olive (Elaeagnus angusti-folia, 3 patches) occurred less commonly. Together, these four species represented 97.5% of all patches recorded in 2019. Four IEP species were found on the monitored routes for the first time: Russian olive (Elaeagnus angustifolia), quackgrass (Elymus repens), Siberian elm (Ulmus pumila), and African mustard (Malcolmia africana, not on the priority species list before 2019). Cathedral Valley Road had higher IEP priority patches per kilometer (5.68) than the Scenic Drive (2.05). IEP species were found on 37.9% (25 of 66) of monitored transects. Almost all these detections were Russian thistle (Salsola sp.). Russian thistle was widespread, present in 33.3% of transects, with an estimated cover of 0.2% across all transects sampled. Across routes monitored in all three rotations (2012, 2015, and 2019), Russian thistle has increased in frequency. However, its frequency remained about the same from 2015 to 2019, and percent cover remains low. Tamarisk and field bindweed have both increased in preva-lence since monitoring began, with tamarisk showing a dramatic increase in the number and size of patches. Immediate control of tamarisk and these other species is recommended to reduce their numbers on these routes. The NCPN plans to Capitol Reef in 2020 to monitor Oak and Pleasant creeks, completing the third rotation of invasive plant monitoring.

2021 ◽  
Author(s):  
Dustin Perkins

Invasive exotic plant (IEP) species are a significant threat to natural ecosystem integrity and biodiversity, and controlling them is a high priority for the National Park Service. The Northern Colorado Plateau Network (NCPN) selected the early detection of IEPs as one of 11 monitoring protocols to be implemented as part of its long-term monitoring program. We also calculated a patch management index (PMI) to quantify the extent and density of invasive patches into a single value that helps identify the scale of the problem. Park managers can use this tool to help prioritize IEP treatment. At Dinosaur National Monument, the NCPN monitors IEPs in the Green and Yampa river corridors. This report summarizes data from monitoring on the Green River in 2019, and monitoring on the Yampa River in 2017, to represent the completion of the third monitoring rotation of the entire river corridor (2002–2005, 2010–2011, 2017–2019). During surveys conducted from June 26 to July 2, 2019, NCPN staff detected 12 priority IEP species and two non-priority species in a 84.6-hectare (209-acre) area along 74.4 kilometers of the Green River above (“upper”) and below (“low-er”) its confluence with the Yampa. A total of 2,535 IEP patches were detected. Of those patches, 24.2% and 15.6% were smaller than 40 m2 on the upper and lower Green River reaches, respectively. The patch management index (PMI) was low or very low for 95.7% of patches on the upper Green River and 90.9% of patches on the lower Green River. Tamarisk (Tamarix sp.), broad-leaf pepperwort (Lepidium latifolium), and yellow sweetclover (Meli-lotus officinalis) were the most widespread species. For the first time, NCPN monitoring detected teasel (Dipsacus sylvestris) on the upper Green River. Yellow sweetclover has increased on all three river reaches during the survey years. Musk thistle (Carduus nutans) was found at considerably lower levels than yellow sweetclover but has also increased on all three river reaches. Leafy spurge is increasing on the lower Green River and Yampa River. Cheatgrass was not monitored in the first rotation, but increased substantially in cover and percent frequency on all three river sections from 2010–2011 to 2017–2019. This increase may be due to a lack of recent high-flow scouring events. The highly regulated upper Green River generally has the highest number of IEPs, while the lower Green River has a moderate amount of IEPs. The largely unregulated flows of the Yampa River continue to result in a lower number of patches per kilometer, lower percent cover, and lower percent frequency than the upper or lower Green River. Network staff will return to the monument in 2022 to begin the fourth monitoring rotation.


2021 ◽  
Author(s):  
Dustin Perkins

Invasive exotic plant (IEP) species are a significant threat to natural ecosystem integrity and biodiversity, and controlling them is a high priority for the National Park Service. The North-ern Colorado Plateau Network (NCPN) selected the early detection of IEPs as one of 11 monitoring protocols to be implemented as part of its long-term monitoring program. This report represents work completed at Colorado National Monument during 2019. During monitoring conducted June 12–19, a total of 20 IEP species were detected on monitoring routes and transects. Of these, 12 were priority species that accounted for 791 separate IEP patches. IEPs were most prevalent along riparian areas. Yellow sweetclover (Melilotis officinale) and yellow salsify (Tragopogon dubius) were the most commonly detected priority IEPs along monitoring routes, representing 73% of all priority patches. Patches of less than 40 m2 were typical of nearly all priority IEP species except yellow sweetclover. A patch management index (PMI) was created by combining patch size class and percent cover for each patch. In 2019, a large majority of priority IEP patches were assigned a PMI score of low (46%) or very low (50%), indicating small and/or sparse patches where control is generally still feasible. This is similar to the numbers for 2017, when 99% of patches scored low or very low in PMI. Seventy-eight percent of tree patches were classified as seedlings or saplings, which require less effort to control than mature trees. Cheatgrass (Anisantha tectorum) was the most common IEP recorded in transects, found in 30–77% of transects across the different routes. It was the only species found in transects on all monitoring routes. When treated and untreated extra areas near the West Entrance were compared, the treated area had comparable or higher lev-els of IEPs than the untreated area. When segments of monitoring routes conducted between 2003 and 2019 were compared, results were mixed, due to the different species monitored in different time periods. But in general, the number of IEPs per 100 meters is increasing or remaining constant over time. There were notable increases in IEP patches per 100 meters on several routes in 2019: field bindweed (Convolvulus arvensis) along East Glade Park Road; Siberian elm (Ulmus pumila) in Red Canyon; yellow salsify along East Glade Park Road, No Thoroughfare Canyon, No Thoroughfare Trail, and Red Canyon; and yellow sweetclover in No Thoroughfare Canyon and Red Canyon. Network staff will return to re-sample monitoring routes in 2021.


2020 ◽  
Vol 28 (4) ◽  
pp. 241-249
Author(s):  
Cleverton da Silva ◽  
Arleu Barbosa Viana-Junior ◽  
Cristiano Schetini de Azevedo ◽  
Juliano Ricardo Fabricante

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2152
Author(s):  
Marie-Anne Dusz ◽  
François-Marie Martin ◽  
Fanny Dommanget ◽  
Anne Petit ◽  
Caroline Dechaume-Moncharmont ◽  
...  

Managing invasive exotic plant species is a complex challenge, especially for Asian knotweeds (Reynoutria spp.). Tarping is a regularly cited but poorly documented control method, which consists of covering the ground with a tarp (agricultural tarp, geotextile, geomembrane, etc.) to create a physical barrier to hinder plant growth and deprive the plants of light in order to deplete their rhizomatous reserves. To improve our knowledge of tarping in order to identify the key factors of its success or failure, we reviewed the relevant grey and scientific literature and conducted an international survey among managers to collect feedback on tarping experiments. In the literature, as well as in the field, practices are quite heterogeneous, and the method’s effectiveness is highly contrasted. A better consideration of knotweed biology may improve the efficacy of the method. Based on the bibliography and survey work, we propose practical recommendations including covering the entire stand, extending the tarping up to 2.5 m beyond its edges for a period of at least six years, and ensuring regular monitoring. Even though tarping does not seem to be a one-size-fits-all solution to eradicate knotweed, it could still be a useful control method once knotweed has become a critical management issue.


2011 ◽  
Vol 35 (3) ◽  
pp. 243-251 ◽  
Author(s):  
Jeffrey P. Duguay ◽  
Cheryl Farfaras
Keyword(s):  

2006 ◽  
Vol 2 (2) ◽  
pp. 189-193 ◽  
Author(s):  
Naomi Cappuccino ◽  
J.Thor Arnason

Of the many exotic plants that have become naturalized in North America, only a small proportion are pests capable of invading and dominating intact natural communities. In the present study, we tested the hypothesis that the most invasive plants are phytochemically unique in their new habitats. A comparison of exotic plant species that are highly invasive in North America with exotics that are widespread, but non-invasive revealed that the invasive plants were more likely to have potent secondary compounds that have not been reported from North American native plants. On average, the compounds found in the invasive plants were reported from fewer species, fewer genera and fewer families than those from non-invasive plants. Many of the unique phytochemicals from invasive plants have been reported to have multiple activities, including antiherbivore, antifungal, antimicrobial and allelopathic (phytotoxic) effects, which may provide the plants with several advantages in their new environments.


Sign in / Sign up

Export Citation Format

Share Document