Distribution of random motion at renewal instants in three-dimensional space

2020 ◽  
Vol 17 (4) ◽  
pp. 563-573
Author(s):  
Anatoliy Pogorui ◽  
Ramón Rodrĭguez-Dagnino

In physics, chemistry, and mathematics, the process of Brownian motion is often identified with the Wiener process that has infinitesimal increments. Recently, many models of Brownian motion with finite velocity have been intensively studied. We consider one of such models, namely, a generalization of the Goldstein--Kac process to the three-dimensional case with the Erlang-2 and Maxwell--Boltzmann distributions of velocities alternations. Despite the importance of having a three-dimensional isotropic random model for the motion of Brownian particles, numerous research efforts did not lead to an expression for the probability of the distribution of the particle position, the motion of which is described by the three-dimensional telegraph process. The case where a particle carries out its movement along the directions determined by the vertices of a regular $n+1$-hedron in the $n$-dimensional space was studied in \cite{Samoilenko}, and closed-form results for the distribution of the particle position were obtained. Here, we obtain expressions for the distribution function of the norm of the vector that defines particle's position at renewal instants in semi-Markov cases of the Erlang-2 and Maxwell--Boltzmann distributions and study its properties. By knowing this distribution, we can determine the distribution of particle positions, since the motion of a particle is isotropic, i.e., the direction of its movement is uniformly distributed on the unit sphere in ${\mathbb R}^3$. Our results may be useful in studying the properties of an ideal gas.

Author(s):  
Zoya O. Vyzhva

The estimator of the mean-square approximation of 3-D homogeneous and isotropic random field is investigated. The problem of statistical simulation of realizations of random fields in threedimensional space is considered. The algorithm for the receiving of this realization has been formulated, which has been constructed on the base the mean-square approximation of random fields estimator. It has been constructed the statistical model for the Gaussian random fields in three-dimensional space, which has been given by its statistical characteristics.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


2019 ◽  
Author(s):  
Jumpei Morimoto ◽  
Yasuhiro Fukuda ◽  
Takumu Watanabe ◽  
Daisuke Kuroda ◽  
Kouhei Tsumoto ◽  
...  

<div> <div> <div> <p>“Peptoids” was proposed, over decades ago, as a term describing analogs of peptides that exhibit better physicochemical and pharmacokinetic properties than peptides. Oligo-(N-substituted glycines) (oligo-NSG) was previously proposed as a peptoid due to its high proteolytic resistance and membrane permeability. However, oligo-NSG is conformationally flexible and is difficult to achieve a defined shape in water. This conformational flexibility is severely limiting biological application of oligo-NSG. Here, we propose oligo-(N-substituted alanines) (oligo-NSA) as a new peptoid that forms a defined shape in water. A synthetic method established in this study enabled the first isolation and conformational study of optically pure oligo-NSA. Computational simulations, crystallographic studies and spectroscopic analysis demonstrated the well-defined extended shape of oligo-NSA realized by backbone steric effects. The new class of peptoid achieves the constrained conformation without any assistance of N-substituents and serves as an ideal scaffold for displaying functional groups in well-defined three-dimensional space, which leads to effective biomolecular recognition. </p> </div> </div> </div>


Author(s):  
Raimo Hartmann ◽  
Hannah Jeckel ◽  
Eric Jelli ◽  
Praveen K. Singh ◽  
Sanika Vaidya ◽  
...  

AbstractBiofilms are microbial communities that represent a highly abundant form of microbial life on Earth. Inside biofilms, phenotypic and genotypic variations occur in three-dimensional space and time; microscopy and quantitative image analysis are therefore crucial for elucidating their functions. Here, we present BiofilmQ—a comprehensive image cytometry software tool for the automated and high-throughput quantification, analysis and visualization of numerous biofilm-internal and whole-biofilm properties in three-dimensional space and time.


i-com ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 67-85
Author(s):  
Matthias Weise ◽  
Raphael Zender ◽  
Ulrike Lucke

AbstractThe selection and manipulation of objects in Virtual Reality face application developers with a substantial challenge as they need to ensure a seamless interaction in three-dimensional space. Assessing the advantages and disadvantages of selection and manipulation techniques in specific scenarios and regarding usability and user experience is a mandatory task to find suitable forms of interaction. In this article, we take a look at the most common issues arising in the interaction with objects in VR. We present a taxonomy allowing the classification of techniques regarding multiple dimensions. The issues are then associated with these dimensions. Furthermore, we analyze the results of a study comparing multiple selection techniques and present a tool allowing developers of VR applications to search for appropriate selection and manipulation techniques and to get scenario dependent suggestions based on the data of the executed study.


Sign in / Sign up

Export Citation Format

Share Document