scholarly journals Occurrence of whirling disease symptoms in cultured common carp in Basrah, Iraq

2019 ◽  
Vol 31 (2) ◽  
pp. 76-81
Author(s):  
Ebtihal K.J. Al-Nowfal ◽  
Najim R. Khamees ◽  
Sawsan S. Al-Haroon

A total of 128 fish samples including 70 Cyprinus carpio Linnaeus, 1758, 10 Leuciscus vorax (Heckel, 1843), 40 Oreochromis aureus (Steindachner, 1864) and eight Planiliza abu (Heckel, 1843) were collected during the period from November 2016 to May 2017. Seven different localities (floating cages, earthen ponds and natural water) in Basrah were investigated. Among some detected fish diseases, whirling disease symptoms was reported for the first time in Iraq in April 2017, from two C. carpio cultured in earthen fish ponds of Marine Science Centre, University of Basrah. The infested fish were dwarfed, with abnormal big head and small body. Grossly signs of the diseases represent fins and tail deformities in addition to open ulcers and losing  of scales, and necrosis of skin and muscles. Internally, fish suffered of muscles ecchymosis and vertebral deformities. Histological sections revealed that the spinal  cord had healthy structure.

Author(s):  
Kefah Naser Abdul-Ameer ◽  
Fatima Khalaf Atwan

   The Ciliophoran Trichodina magna Van As and Basson, 1989 is recorded for the first time in in Iraq from gills of the blue tilapia Oreochromis aureus (Steindachner, 1864) Iraq from Al-Graiat location on the Tigris River at Baghdad city. The description and measurements of this external parasite as well as its illustrations are given.  


2021 ◽  
pp. 1-18
Author(s):  
Natalie M. Sisson ◽  
Emily Impett ◽  
L.H. Shu

Abstract Urgent societal problems, including climate change, require innovation and can benefit from interdisciplinary solutions. A small body of research has demonstrated the potential of positive emotions (e.g., gratitude, awe) to promote creativity and prosocial behavior, which may help address these problems. This study integrates, for the first time, psychology research on a positive and prosocial emotion (i.e., gratitude) with engineering-design creativity research. In a pre-registered study design, engineering students and working engineers (pilot N = 49; full study N = 329) completed gratitude, positive-emotion control, or neutral-control inductions. Design creativity was assessed through rater scores of responses to an Alternate Uses Task (AUT) and a Wind-Turbine-Blade Repurposing Task (WRT). No significant differences among AUT scores emerged across conditions in either sample. While only the pilot-study manipulation of gratitude was successful, WRT results warrant further studies on the effect of gratitude on engineering-design creativity. The reported work may also inform other strategies to incorporate prosocial emotion to help engineers arrive at more original and effective concepts to tackle environmental sustainability, and in the future, other problems facing society.


2021 ◽  
Vol 4 (1) ◽  
pp. 38-54
Author(s):  
Serkan Saygun

In this study, the fish species inhabiting the Bolaman Stream drains to the Black Sea from the Fatsa coast (Ordu Province, Turkey) was reported for the first time. The study was caught out non-periodically by sampling from seven stations in the Bolaman Stream between July 2017 and November 2018. Fish samples were captured with an electroshock device. With this study, it was determined that the fish fauna of the Bolaman Stream is represented by 10 species in five families (Acheilognothidae, Cyprinidae, Gobiidae, Leuciscidae, and Salmonidae). These species were as follows, respectively Rhodeus amarus, Barbus tauricus, Capoeta banarescui, Neogobius fluviatilis, Ponticola turani, Alburnus derjugini, Squalius cephalus, Vimba vimba, Alburnoides fasciatus, and Salmo coruhensis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yang Liu ◽  
Grace Hammel ◽  
Minjun Shi ◽  
Zhijian Cheng ◽  
Sandra Zivkovic ◽  
...  

Although the increased expression of members of the chondroitin sulfate proteoglycan family, such as neuron-glial antigen 2 (NG2), have been well documented after an injury to the spinal cord, a complete picture as to the cellular origins and function of this NG2 expression has yet to be made. Using a spinal cord injury (SCI) mouse model, we describe that some infiltrated bone marrow-derived macrophages (BMDMΦ) are early contributors to NG2/CSPG4 expression and secretion after SCI. We demonstrate for the first time that a lesion-related form of cellular debris generated from damaged myelin sheaths can increase NG2/CSPG4 expression in BMDMΦ, which then exhibit enhanced proliferation and decreased phagocytic capacity. These results suggest that BMDMΦ may play a much more nuanced role in secondary spinal cord injury than previously thought, including acting as early contributors to the NG2 component of the glial scar.


2021 ◽  
Author(s):  
Natalie M. Sisson ◽  
Emily A. Impett ◽  
L. H. Shu

Abstract Urgent societal problems, including climate change, require innovation, and can benefit from interdisciplinary solutions. A small body of research has demonstrated the potential of positive emotions (e.g., gratitude, awe) to promote creativity and prosocial behavior, which may help address these problems. This study integrates, for the first time, psychology research on a positive and prosocial emotion (i.e., gratitude) with engineering-design creativity research. In a pre-registered study design, engineering students and working engineers (pilot N = 49; full study N = 329) completed gratitude, positive-emotion control, or neutral-control inductions. Design creativity was assessed through rater scores of responses to an Alternate Uses Task (AUT) and a Wind-Turbine-Blade Repurposing Task (WRT). No significant differences among AUT scores emerged across conditions in either sample. While only the pilot-study manipulation of gratitude was successful, WRT results warrant further studies on the effect of gratitude on engineering-design creativity. The reported work may also inform other strategies to incorporate prosocial emotion to help engineers arrive at more original and effective concepts to tackle environmental sustainability, and in the future, other problems facing society.


Neurosurgery describes the surgical treatment and management of various disease processes that target the brain, spinal cord, and peripheral nervous system. The specialty is wide and varied as increasing numbers of neurological conditions can now be improved following neurosurgery; for example, some types of epilepsy respond to the insertion of a vagal nerve stimulator, Parkinson’s disease symptoms can be diminished with a deep brain stimulator, and intractable back pain may be improved following spinal surgery. Practitioners must be equipped with the knowledge and skills to care for these patients and meet their immediate and long-term needs.


2019 ◽  
Vol 20 (20) ◽  
pp. 5151 ◽  
Author(s):  
Norante ◽  
Peggion ◽  
Rossi ◽  
Martorana ◽  
De Mario ◽  
...  

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective death of motor neurons (MNs), probably by a combination of cell- and non-cell-autonomous processes. The past decades have brought many important insights into the role of astrocytes in nervous system function and disease, including the implication in ALS pathogenesis possibly through the impairment of Ca2+-dependent astrocyte-MN cross-talk. In this respect, it has been recently proposed that altered astrocytic store-operated Ca2+ entry (SOCE) may underlie aberrant gliotransmitter release and astrocyte-mediated neurotoxicity in ALS. These observations prompted us to a thorough investigation of SOCE in primary astrocytes from the spinal cord of the SOD1(G93A) ALS mouse model in comparison with the SOD1(WT)-expressing controls. To this purpose, we employed, for the first time in the field, genetically-encoded Ca2+ indicators, allowing the direct assessment of Ca2+ fluctuations in different cell domains. We found increased SOCE, associated with decreased expression of the sarco-endoplasmic reticulum Ca2+-ATPase and lower ER resting Ca2+ concentration in SOD1(G93A) astrocytes compared to control cells. Such findings add novel insights into the involvement of astrocytes in ALS MN damage.


2018 ◽  
Vol 124 (6) ◽  
pp. 1471-1482 ◽  
Author(s):  
Heidi L. Lujan ◽  
Anne Tonson ◽  
Robert W. Wiseman ◽  
Stephen E. DiCarlo

Spinal cord injury (SCI) resulting in tetraplegia is a devastating, life-changing insult causing paralysis and sensory impairment as well as distinct autonomic dysfunction that triggers compromised cardiovascular, bowel, bladder, and sexual activity. Life becomes a battle for independence as even routine bodily functions and the smallest activity of daily living become major challenges. Accordingly, there is a critical need for a chronic preclinical model of tetraplegia. This report addresses this critical need by comparing, for the first time, resting-, reflex-, and stress-induced cardiovascular, autonomic, and hormonal responses each week for 4 wk in 12 sham-operated intact rats and 12 rats with chronic, complete C6–7 spinal cord transection. Loss of supraspinal control to all sympathetic preganglionic neurons projecting to the heart and vasculature resulted in a profound bradycardia and hypotension, reduced cardiac sympathetic and parasympathetic tonus, reduced reflex- and stress-induced sympathetic responses, and reduced sympathetic support of blood pressure as well as enhanced reliance on angiotensin to maintain arterial blood pressure. Histological examination of the nucleus ambiguus and stellate ganglia supports the profound and distinct autonomic and cardiac deficits and reliance on angiotensin to maintain cardiovascular stability following chronic, complete cervical6–7 cord transection. NEW & NOTEWORTHY For the first time, resting-, reflex-, and stress-induced cardiovascular, autonomic, and hormonal responses were studied in rats with chronic, complete C6–7 cord transection. Loss of supraspinal control of all sympathetic preganglionic neurons reduced cardiac sympathetic and parasympathetic tonus, reflex and stress-induced sympathetic responses, and sympathetic support of blood pressure as well as enhanced reliance on angiotensin to maintain arterial blood pressure. Histological examination supports the distinct deficits associated with cervical cord injury.


Zootaxa ◽  
2018 ◽  
Vol 4370 (5) ◽  
pp. 519 ◽  
Author(s):  
CONNI M. SIDABALOK ◽  
NIEL L. BRUCE

Two new species of Metacirolana from coral reefs in Indonesia are described and Metacirolana spinosa (Bruce, 1980) is recorded for the first time in Indonesia. Metacirolana lombok sp. nov. and Metacirolana mioskon sp. nov. show similarities with several other species of Metacirolana forming a species group within the genus, characterized by small body size (2.0–3.5 mm), smooth body surfaces, weakly produced rostrum, lack of dorsal carinae and abundant chromatophores. 


1988 ◽  
Vol 168 (4) ◽  
pp. 1487-1492 ◽  
Author(s):  
D A Herrington ◽  
R H Hall ◽  
G Losonsky ◽  
J J Mekalanos ◽  
R K Taylor ◽  
...  

Isogenic mutant strains of V. cholerae O1 lacking elements of a genetic regulon controlled by toxR and implicated in virulence were tested in volunteers. A deletion mutation in ctxA, the gene encoding the A subunit of cholera toxin, markedly attenuated disease symptoms without affecting intestinal colonization. Deletion of toxR, the gene encoding the cholera toxin-positive regulatory protein resulted in a diminution in colonizing capacity. A deletion mutation in tcpA, encoding the major subunit of the toxin coregulated pilus (regulated by toxR), abolished the colonizing capacity of this strain. These results show for the first time the role of a specific pilus structure in colonization of the human intestine by V. cholerae O1 and exemplify the significance of a genetic regulon in pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document