scholarly journals AGENT BASED, DISTRIBUTED CONTROL STRATEGIES AND OPTIMIZATION OF PLUG-IN ELECTRIC VEHICLES ON SMART/MICROGRID ARCHITECTURES

2013 ◽  
Author(s):  
Kyle Bordeau
Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Jorge Lopez-Jimenez ◽  
Nicanor Quijano ◽  
Alain Vande Wouwer

Climate change and the efficient use of freshwater for irrigation pose a challenge for sustainable agriculture. Traditionally, the prediction of agricultural production is carried out through crop-growth models and historical records of the climatic variables. However, one of the main flaws of these models is that they do not consider the variability of the soil throughout the cultivation area. In addition, with the availability of new information sources (i.e., aerial or satellite images) and low-cost meteorological stations, it is convenient that the models incorporate prediction capabilities to enhance the representation of production scenarios. In this work, an agent-based model (ABM) that considers the soil heterogeneity and water exchanges is proposed. Soil heterogeneity is associated to the combination of individual behaviours of uniform portions of land (agents), while water fluxes are related to the topography. Each agent is characterized by an individual dynamic model, which describes the local crop growth. Moreover, this model considers positive and negative effects of water level, i.e., drought and waterlogging, on the biomass production. The development of the global ABM is oriented to the future use of control strategies and optimal irrigation policies. The model is built bottom-up starting with the definition of agents, and the Python environment Mesa is chosen for the implementation. The validation is carried out using three topographic scenarios in Colombia. Results of potential production cases are discussed, and some practical recommendations on the implementation are presented.


2021 ◽  
Author(s):  
Ali Najmi ◽  
Sahar Nazari ◽  
Farshid Safarighouzhdi ◽  
Eric J. Miller ◽  
Raina MacIntyre ◽  
...  

Author(s):  
Andrea Mammoli ◽  
C. Birk Jones ◽  
Hans Barsun ◽  
David Dreisigmeyer ◽  
Gary Goddard ◽  
...  

2021 ◽  
Vol 12 (2) ◽  
pp. 73
Author(s):  
Dita Novizayanti ◽  
Eko Agus Prasetio ◽  
Manahan Siallagan ◽  
Sigit Puji Santosa

Currently, the adoption of electric vehicles (EV) draws much attention, as the environmental issue of reducing carbon emission is increasing worldwide. However, different countries face different challenges during this transition, particularly developing countries. This research aims to create a framework for the transition to EV in Indonesia through Agent-Based Modeling (ABM). The framework is used as the conceptual design for ABM to investigate the effect of agents’ decision-making processes at the microlevel into the number of adopted EV at the macrolevel. The cluster analysis is equipped to determine the agents’ characteristics based on the categories of the innovation adopters. There are 11 significant variables and four respondents’ clusters: innovators, early majority, late majority, and the uncategorized one. Moreover, Twitter data analytics are utilized to investigate the information engagement coefficient based on the agents’ location. The agents’ characteristics which emerged from this analysis framework will be used as the fundamental for investigating the effect of agents’ specific characteristics and their interaction through ABM for further research. It is expected that this framework will enable the discovery of which incentive scheme or critical technical features effectively increase the uptake of EV according to the agents’ specific characteristics.


Procedia CIRP ◽  
2016 ◽  
Vol 57 ◽  
pp. 439-444 ◽  
Author(s):  
Denis Kurle ◽  
Stefan Blume ◽  
Tobias Zurawski ◽  
Sebastian Thiede

Sign in / Sign up

Export Citation Format

Share Document