scholarly journals Plitidepsin, an inhibitor of the cell elongation factor eEF1a, and molnupiravir an analogue of the ribonucleoside cytidine, two new chemical compounds with intense activity against SARS-CoV-2

Author(s):  
Jordi Reina ◽  

The knowledge of the replicative cycle of SARS-CoV-2 and its interactions with cellular proteins has opened a new therapeutic possibility based on blocking those essential for the virus. The cellular protein elongation factor eEF1A could be a good target. Among its natural inhibitors are didemnins and their related chemical compounds such as plitidepsin. In human cell culture, this compound is capable of inhibiting the virus with a potency 27,5 times that of remdesivir. It must be administered intravenously. Of the ribonucleoside analogues, molnupiravir (MK-4483/EIDD-2801) (hydroxy-cytidine) determines a lethal mutagenesis on SARS-CoV-2. In animals, after oral administration, the pulmonary viral load decreases 25,000 times and when administered as prophylaxis, approximately 100,000 times. It prevents the transmission of the virus and eliminates its presence in the oropharynx. Both chemicals have started Phase I / II human clinical trials

10.1038/ng904 ◽  
2002 ◽  
Vol 31 (3) ◽  
pp. 301-305 ◽  
Author(s):  
Nisha Anand ◽  
Sabita Murthy ◽  
Gudrun Amann ◽  
Meredith Wernick ◽  
Lisa A. Porter ◽  
...  

2008 ◽  
Vol 1784 (2) ◽  
pp. 312-318 ◽  
Author(s):  
Ying-Fang Yang ◽  
Min-Yuan Chou ◽  
Chia-Yu Fan ◽  
Sung-Fang Chen ◽  
Ping-Chiang Lyu ◽  
...  

2006 ◽  
Vol 102 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Geeta Kulkarni ◽  
Dmitry A. Turbin ◽  
Anahita Amiri ◽  
Sujeeve Jeganathan ◽  
Miguel A. Andrade-Navarro ◽  
...  

1996 ◽  
Vol 135 (4) ◽  
pp. 953-963 ◽  
Author(s):  
G Liu ◽  
J Tang ◽  
B T Edmonds ◽  
J Murray ◽  
S Levin ◽  
...  

The machinery of eukaryotic protein synthesis is found in association with the actin cytoskeleton. A major component of this translational apparatus, which is involved in the shuttling of aa-tRNA, is the actin-binding protein elongation factor 1alpha (EF-1alpha). To investigate the consequences for translation of the interaction of EF-1alpha with F-actin, we have studied the effect of F-actin on the ability of EF-1alpha to bind to aa-tRNA. We demonstrate that binding of EF-1alpha:GTP to aa-tRNA is not pH sensitive with a constant binding affinity of approximately 0.2 microM over the physiological range of pH. However, the sharp pH dependence of binding of EF-1alpha to F-actin is sufficient to shift the binding of EF-1alpha from F-actin to aa-tRNA as pH increases. The ability of EF-1alpha to bind either F-actin or aa-tRNA in competition binding experiments is also consistent with the observation that EF-1alpha's binding to F-actin and aa-tRNA is mutually exclusive. Two pH-sensitive actin-binding sequences in EF-1alpha are identified and are predicted to overlap with the aa-tRNA-binding sites. Our results suggest that pH-regulated recruitment and release of EF-1alpha from actin filaments in vivo will supply a high local concentration of EF-1alpha to facilitate polypeptide elongation by the F-actin-associated translational apparatus.


2003 ◽  
Vol 77 (4) ◽  
pp. 2359-2368 ◽  
Author(s):  
Yasushi Kawaguchi ◽  
Kentaro Kato ◽  
Michiko Tanaka ◽  
Mikiko Kanamori ◽  
Yukihiro Nishiyama ◽  
...  

ABSTRACT Earlier studies have shown that translation elongation factor 1δ (EF-1δ) is hyperphosphorylated in various mammalian cells infected with representative alpha-, beta-, and gammaherpesviruses and that the modification is mediated by conserved viral protein kinases encoded by herpesviruses, including UL13 of herpes simplex virus type 1 (HSV-1), UL97 of human cytomegalovirus, and BGLF4 of Epstein-Barr virus (EBV). In the present study, we attempted to identify the site in EF-1δ associated with the hyperphosphorylation by the herpesvirus protein kinases. Our results are as follows: (i) not only in infected cells but also in uninfected cells, replacement of the serine residue at position 133 (Ser-133) of EF-1δ by alanine precluded the posttranslational processing of EF-1δ, which corresponds to the hyperphosphorylation. (ii) A purified chimeric protein consisting of maltose binding protein (MBP) fused to a domain of EF-1δ containing Ser-133 (MBP-EFWt) is specifically phosphorylated in in vitro kinase assays by purified recombinant UL13 fused to glutathione S-transferase (GST) expressed in the baculovirus system. In contrast, the level of phosphorylation by the recombinant UL13 of MBP-EFWt carrying an alanine replacement of Ser-133 (MBP-EFS133A) was greatly impaired. (iii) MBP-EFWt is also specifically phosphorylated in vitro by purified recombinant BGLF4 fused to GST expressed in the baculovirus system, and the level of phosphorylation of MBP-EFS133A by the recombinant BGLF4 was greatly reduced. (iv) The sequence flanking Ser-133 of EF-1δ completely matches the consensus phosphorylation site for a cellular protein kinase, cdc2, and in vitro kinase assays revealed that purified cdc2 phosphorylates Ser-133 of EF-1δ. (v) As observed with EF-1δ, the casein kinase II β subunit (CKIIβ) was specifically phosphorylated by UL13 in vitro, while the level of phosphorylation of CKIIβ by UL13 was greatly diminished when a serine residue at position 209, which has been reported to be phosphorylated by cdc2, was replaced with alanine. These results indicate that the conserved protein kinases encoded by herpesviruses and a cellular protein kinase, cdc2, have the ability to target the same amino acid residues for phosphorylation. Our results raise the possibility that the viral protein kinases mimic cdc2 in infected cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kawinthra Khwanraj ◽  
Suriyat Madlah ◽  
Khwanthana Grataitong ◽  
Permphan Dharmasaroja

The PI3K/Akt/mTOR pathway is one of dysregulated pathways in Parkinson’s disease (PD). Previous studies in nonneuronal cells showed that Akt regulation can be increased by eukaryotic protein elongation factor 1 alpha 2 (eEF1A2). eEF1A2 is proposed to contribute protection against apoptotic death, likely through activation of the PI3K/Akt pathway. Whether eEF1A2 plays a role in the prevention of cell death in PD has not been investigated. Recently, gene profiling on dopaminergic neurons from postmortem PD patients showed both upregulation and downregulation of some PI3K and mTOR genes. In this paper, the expression of all gene members of the PI3K/Akt/mTOR pathway in relation to those of the eEF1A isoforms in a cellular model of PD was investigated at the mRNA level. The results showed a similar trend of upregulation of genes of the eEF1A isoforms (eEF1A1andeEF1A2) and of the PI3K (classes I–III)/Akt (Akt1,Akt2, andAkt3)/mTOR (mTORC1andmTORC2) pathway in both nondifferentiated and differentiated SH-SY5Y dopaminergic cells treated with 1-methyl-4-phenylpyridinium (MPP+). Upregulation ofeEF1A2,Akt1, andmTORC1was consistent with the relative increase of eEF1A2, Akt, phospho-Akt, and mTORC1 proteins. The possible role of eEF1A isoforms in the regulation of the PI3K/Akt/mTOR pathway in PD is discussed.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1432
Author(s):  
Karolina Gościńska ◽  
Somayeh Shahmoradi Ghahe ◽  
Sara Domogała ◽  
Ulrike Topf

Translation is a core process of cellular protein homeostasis and, thus, needs to be tightly regulated. The production of newly synthesized proteins adapts to the current needs of the cell, including the response to conditions of oxidative stress. Overall protein synthesis decreases upon oxidative stress. However, the selective production of proteins is initiated to help neutralize stress conditions. In contrast to higher eukaryotes, fungi require three translation elongation factors, eEF1, eEF2, and eEF3, for protein synthesis. eEF1 and eEF2 are evolutionarily conserved, but they alone are insufficient for the translation elongation process. eEF3 is encoded by two paralogous genes, YEF3 and HEF3. However, only YEF3 is essential in yeast, whereas the function of HEF3 remains unknown. To elucidate the cellular function of Hef3p, we used cells that were depleted of HEF3 and treated with H2O2 and analyzed the growth of yeast, global protein production, and protein levels. We found that HEF3 is necessary to withstand oxidative stress conditions, suggesting that Hef3p is involved in the selective production of proteins that are necessary for defense against reactive oxygen species.


2021 ◽  
Author(s):  
Carlos Molina-Santiago ◽  
David Vela-Corcía ◽  
Daniel Petras ◽  
Luis Díaz-Martínez ◽  
Alicia Isabel Pérez-Lorente ◽  
...  

AbstractBacterial communities are in a continuous adaptive and evolutionary race for survival. A myriad of molecules that kill, defend, or mediate communication between bacterial cells of different lineages shape the final structure of the microbial community. In this work we expand our knowledge on the chemical interplay and specific mutations that modulate the transition from antagonism to co-existence between two plant-beneficial bacteria, Pseudomonas chlororaphis PCL1606 and Bacillus amyloliquefaciens FZB42. We reveal that the bacteriostatic activity of bacillaene produced by Bacillus relies on an interaction with the protein elongation factor FusA and how mutations in this protein lead to tolerance to bacillaene and other protein translation inhibitors. Additionally, we describe how the unspecific tolerance to antimicrobials associated with mutations in the glycerol kinase GlpK is provoked mainly by a decrease of Bacillus cell membrane permeability among other pleiotropic cellular responses. We conclude that nutrient specialization and mutations in basic biological functions are bacterial evolutive and adaptive strategies that lead to the coexistence of two primary competitive bacterial species rather than their mutual eradication.


2014 ◽  
Vol 289 (44) ◽  
pp. 30499-30510 ◽  
Author(s):  
Erna Davydova ◽  
Angela Y. Y. Ho ◽  
Jedrzej Malecki ◽  
Anders Moen ◽  
Jorrit M. Enserink ◽  
...  

The components of the cellular protein translation machinery, such as ribosomal proteins and translation factors, are subject to numerous post-translational modifications. In particular, this group of proteins is frequently methylated. However, for the majority of these methylations, the responsible methyltransferases (MTases) remain unknown. The human FAM86A (family with sequence similarity 86) protein belongs to a recently identified family of protein MTases, and we here show that FAM86A catalyzes the trimethylation of eukaryotic elongation factor 2 (eEF2) on Lys-525. Moreover, we demonstrate that the Saccharomyces cerevisiae MTase Yjr129c, which displays sequence homology to FAM86A, is a functional FAM86A orthologue, modifying the corresponding residue (Lys-509) in yeast eEF2, both in vitro and in vivo. Finally, Yjr129c-deficient yeast cells displayed phenotypes related to eEF2 function (i.e. increased frameshifting during protein translation and hypersensitivity toward the eEF2-specific drug sordarin). In summary, the present study establishes the function of the previously uncharacterized MTases FAM86A and Yjr129c, demonstrating that these enzymes introduce a functionally important lysine methylation in eEF2. Based on the previous naming of similar enzymes, we have redubbed FAM86A and Yjr129c as eEF2-KMT and Efm3, respectively.


Sign in / Sign up

Export Citation Format

Share Document