scholarly journals Features of dynamic problems with friction calculation by means of an «ADAMS» package

2021 ◽  
pp. 130-137
Author(s):  
К.А. Лесных ◽  
С.А. Никонов ◽  
Н.В. Островская

Актуальность поднимаемых в статье вопросов обусловлена широким применением программных комплексов для численного эксперимента в области механики и необходимостью верификации полученных результатов. В представленной работе отражены возможности программного пакета виртуального моделирования ADAMS для численного анализа динамических задач с учетом трения. В качестве объекта исследования рассмотрено устройство кривошипно-шатунного механизма, имеющего в своём составе фрикционную муфту. Для демонстрации возможностей моделирования задач с учетом трения в ПК ADAMS приведены различные примеры, верифицирующие аналитические решения с численными. Для исследования работы муфты была подтверждена зависимость момента сил трения от относительной скорости и смоделирована работа кривошипно-шатунного механизма. Отдельно была рассмотрена задача о получении коэффициентов трения качения, которые в результате моделирования в ПК ADAMS, оказываются значительно меньше своих предельных коэффициентов трения качения. The relevance of the issues raised in the article is due to the widespread use of software systems for numerical experiments in the field of mechanics and the need to verify the results obtained. Possibilities of the virtual modeling software package ADAMS for the numerical analysis of dynamic tasks taking into account friction are reflected in work. As an object of a research the device of the crank-conrod mechanism in corporating the frictional coupling is considered. For demonstration of tasks taking into account friction modeling opportunities in an ADAMS package various examples verifying analytical decisions with numerical are given. For a research of the coupling the dependence of the friction forces moment operation on relative speed was confirmed and operation of the crank-conrod mechanism is simulated. The task about receiving coefficients of swing friction which as a result of modeling in an ADAMS package, appear much less than the limit coefficients of swing friction was separately considered.

2021 ◽  
Author(s):  
Victoria Khoroshevskaya

The article is devoted to the study of vanadium, a metal capable of stimulating the growth of phytoplankton in situ and has the greatest biological activity in dissolved form. The pattern of an increase in the concentration of vanadium dissolved forms in the mixing zones during the transition from river waters to seawaters is known. In this article, we examine the behavior, ratio and change in the concentrations of vanadium dissolved and suspended forms during the passage of geochemical barriers. The estuarine zone of the Razdolnaya River–Amur Bay (Sea of Japan) is considered as "river-sea" mixing zone. Modelling of physicochemical processes was carried out using the Selector-S and MINTEQA2/PRODEFA2 software systems. Ion-associative models of sea and river water were built and the modelling of the process of their mixing was carried out using the Selector-S software package. The sorption process was simulated using the MINTEQA2/PRODEFA2 software package. The results of modelling physicochemical processes occurring at geochemical barriers help to understand the reasons for changes in concentrations, both total vanadium and biologically active dissolved vanadium forms, during the passage of geochemical barriers in the "river-sea" mixing zones. The results showed that there is a change in the dissolved forms of vanadium migration, their transformation and an increase in the concentration of dissolved forms of vanadium at the geochemical barrier


2018 ◽  
Vol 45 ◽  
pp. 00030
Author(s):  
Barbara Kliszczewicz

The paper is dedicated to the analysis interactions between the structure of a field-based cylindrical tank made from reinforced concrete and randomly or unevenly distributed strata of subsoil. The numerical analysis with the use of the Z_Soil software package was carried out to investigate how variable geotechnical parameters demonstrated by subsoil strata with a low bearing capacity and a high deformability influence strain and stress of the tank shell and bottom. The arrangement made up of a cylindrical tank and stratified subsoil (its 3D model) was subjected to the analysis with the consideration of the elastic and plastic properties of soil (the Coulomb-Mohr model). The analysis results, presented as diagrams of the structure deformation and stresses illustrate the uneven settlement of the tank shell and its internal strain.


Author(s):  
László Horváth

Engineering modeling software systems have been developed during a long integration process from separated partial solutions to current modeling software platforms (MSPs). MSP is expected to provide all necessary model creation and application capabilities during integrated innovation and the life cycle of commercial and industrial products (CIP). Recently, advanced CIP is operated by component systems organized within an increasingly autonomous cyber physical system (CPS). CIP is represented by the engineering model system (EMS). EMS is driven by active contexts between the outside world and EMS, between component models of EMS, and between objects in a component model. EMS reacts to any new contribution using all formerly represented contexts. Consistent structure of contexts gives autonomous operation capability for EMS. Active contexts between the outside world and EMS make EMS sensitive to outside world changes. In the other direction, EMS can generate advice for the outside world using high level and well-organized active knowledge as context. Contributing to research in key issues around EMS and the relevant software technology, this paper introduces results in requirements against MSP capabilities to represent intelligent driving content (IDC) in EMS. A novel organized structure of IDC and continuous engineering (CE) aspects of IDC development are explained and discussed placing the main emphasis on situation awareness. Finally, a new concept is introduced in which purposeful EMS acts as the only media in communication of researchers. Specially configured MSP facilitates participation from industrial, institutional, and academic organizations. The research proceeds at the Laboratory of Intelligent Engineering Systems (IESL) in the organization of the Óbuda University.


SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 365-373 ◽  
Author(s):  
Silviu Livescu ◽  
Steven Craig ◽  
Bill Aitken

Summary The lateral reach and residual bottomhole-assembly (BHA) loads in extended-reach wells strongly depend on the coiled-tubing (CT) mechanical friction. Detailed CT-friction modeling becomes crucial in the prejob planning stage to ensure successful job predictability. However, current numerical simulators consider constant coefficients of friction (CoFs) that are determined from similar operations without taking into account the effects of the operational and downhole parameters on the CoF for a specific operation. This study outlines the modeling of CT-friction force, CoF, and axial BHA loads depending on the operational and downhole parameters when a fluid-hammer tool is used. Recent theoretical, laboratory, and field data have established how CoF depends on the downhole parameters (Livescu and Wang 2014; Livescu and Watkins 2014; Livescu et al. 2014a, b; Livescu and Craig 2015). Previously, these effects were not considered in the CT numerical models, leading to significant CoF differences among available commercial simulators. For instance, the default CoFs in the current prejob simulations for cased holes, when no lubricant or friction-reducing tools such as fluid-hammer tools and tractors are used, vary between 0.24 and 0.30 or even higher. This makes it extremely difficult to consistently evaluate and compare the friction-reduction effects of lubricants, fluid-hammer tools, and tractors in extended-reach wells, especially when the field operator may be consulting with several service companies that use different commercial force-modeling software. This study presents the CT-force matching and fundamental physics on the basis of modeled fluid forces, including radial forces, drag forces, and, most importantly, pressure forces on the CT-friction forces caused by fluid-hammer tools. Extending the method of characteristics, regularly used for studying pressure pulses in straight pipes, the perturbations method also accounts for the helical shape of the CT. The new CT fluid-hammer model is validated against laboratory data. This rigorous method for calculating the axial BHA load and reduced CT-friction force caused by radial vibrations can be easily implemented in currently available tubing-force analysis (TFA) software for CT operations. This novel approach, which uses detailed CT mechanical-friction modeling to take into account parameters such as temperature, internal pressure, pumping rate, and others, improves predictions for CT reach in lateral wells. These findings broaden the current industry understanding of the CT mechanical friction modeling in extended-reach wells, and show benefits for the industry when considering variable friction modeling in commercial CT simulators.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Hao Li ◽  
Tian Wang ◽  
Xinxin Xu ◽  
Bo Jiang ◽  
Jianliang Wei ◽  
...  

Software systems are of great importance, whose quality will influence every walk of our life. However, with increase in their scale and complexity, we are unable to control their quality since only little is known about their actual internal structure. “We cannot control what we cannot measure.” Thus, to control these complex software systems, the first task that we should do is to measure their internal structure. In recent years, people applied the theories and techniques in the field of complex networks to systematically investigate the structure of software systems by representing software systems as networks (i.e., software networks), and many interesting and useful results have been revealed. In this work, we aim to briefly review some recent research advances in the interdisciplinary research between complex networks and software engineering, including modeling, analysis, and applications. Specifically, we first describe some novel techniques to model the structural details of a specific software system. Then, based on these modeling techniques, we introduce some research work on characterizing the static and dynamic structural properties of software systems. Third, we describe some promising applications of software networks in real-world scenarios. Finally, we suggest some future research topics.


Sign in / Sign up

Export Citation Format

Share Document