scholarly journals $H$-Free Graphs of Large Minimum Degree

10.37236/1045 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Noga Alon ◽  
Benny Sudakov

We prove the following extension of an old result of Andrásfai, Erdős and Sós. For every fixed graph $H$ with chromatic number $r+1 \geq 3$, and for every fixed $\epsilon>0$, there are $n_0=n_0(H,\epsilon)$ and $\rho=\rho(H) >0$, such that the following holds. Let $G$ be an $H$-free graph on $n>n_0$ vertices with minimum degree at least $\left(1-{1\over r-1/3}+\epsilon\right)n$. Then one can delete at most $n^{2-\rho}$ edges to make $G$ $r$-colorable.

10.37236/1381 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Stephan Brandt ◽  
Tomaž Pisanski

The core is the unique homorphically minimal subgraph of a graph. A triangle-free graph with minimum degree $\delta > n/3$ is called dense. It was observed by many authors that dense triangle-free graphs share strong structural properties and that the natural way to describe the structure of these graphs is in terms of graph homomorphisms. One infinite sequence of cores of dense maximal triangle-free graphs was known. All graphs in this sequence are 3-colourable. Only two additional cores with chromatic number 4 were known. We show that the additional graphs are the initial terms of a second infinite sequence of cores.


10.37236/8650 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Wouter Cames van Batenburg ◽  
Rémi De Joannis de Verclos ◽  
Ross J. Kang ◽  
François Pirot

We prove that any triangle-free graph on $n$ vertices with minimum degree at least $d$ contains a bipartite induced subgraph of minimum degree at least $d^2/(2n)$. This is sharp up to a logarithmic factor in $n$. Relatedly, we show that the fractional chromatic number of any such triangle-free graph is at most the minimum of $n/d$ and $(2+o(1))\sqrt{n/\log n}$ as $n\to\infty$. This is sharp up to constant factors. Similarly, we show that the list chromatic number of any such triangle-free graph is at most $O(\min\{\sqrt{n},(n\log n)/d\})$ as $n\to\infty$. Relatedly, we also make two conjectures. First, any triangle-free graph on $n$ vertices has fractional chromatic number at most $(\sqrt{2}+o(1))\sqrt{n/\log n}$ as $n\to\infty$. Second, any  triangle-free graph on $n$ vertices has list chromatic number at most $O(\sqrt{n/\log n})$ as $n\to\infty$.


Author(s):  
Fairouz Beggas ◽  
Hamamache Kheddouci ◽  
Walid Marweni

In this paper, we introduce and study a new coloring problem of graphs called the double total dominator coloring. A double total dominator coloring of a graph [Formula: see text] with minimum degree at least 2 is a proper vertex coloring of [Formula: see text] such that each vertex has to dominate at least two color classes. The minimum number of colors among all double total dominator coloring of [Formula: see text] is called the double total dominator chromatic number, denoted by [Formula: see text]. Therefore, we establish the close relationship between the double total dominator chromatic number [Formula: see text] and the double total domination number [Formula: see text]. We prove the NP-completeness of the problem. We also examine the effects on [Formula: see text] when [Formula: see text] is modified by some operations. Finally, we discuss the [Formula: see text] number of square of trees by giving some bounds.


2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.


2008 ◽  
Vol 17 (1) ◽  
pp. 111-136 ◽  
Author(s):  
OLIVER RIORDAN

Thek-coreof a graphGis the maximal subgraph ofGhaving minimum degree at leastk. In 1996, Pittel, Spencer and Wormald found the threshold λcfor the emergence of a non-trivialk-core in the random graphG(n, λ/n), and the asymptotic size of thek-core above the threshold. We give a new proof of this result using a local coupling of the graph to a suitable branching process. This proof extends to a general model of inhomogeneous random graphs with independence between the edges. As an example, we study thek-core in a certain power-law or ‘scale-free’ graph with a parameterccontrolling the overall density of edges. For eachk≥ 3, we find the threshold value ofcat which thek-core emerges, and the fraction of vertices in thek-core whencis ϵ above the threshold. In contrast toG(n, λ/n), this fraction tends to 0 as ϵ→0.


2015 ◽  
Vol 25 (2) ◽  
pp. 172-212
Author(s):  
JÓZSEF BALOGH ◽  
JANE BUTTERFIELD ◽  
PING HU ◽  
JOHN LENZ ◽  
DHRUV MUBAYI

Let $\mathcal{F}$ be a family of r-uniform hypergraphs. The chromatic threshold of $\mathcal{F}$ is the infimum of all non-negative reals c such that the subfamily of $\mathcal{F}$ comprising hypergraphs H with minimum degree at least $c \binom{| V(H) |}{r-1}$ has bounded chromatic number. This parameter has a long history for graphs (r = 2), and in this paper we begin its systematic study for hypergraphs.Łuczak and Thomassé recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Turán number is achieved uniquely by the complete (r + 1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of non-degenerate hypergraphs whose Turán number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle.In order to prove upper bounds we introduce the concept of fibre bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fibre bundle dimension, a structural property of fibre bundles that is based on the idea of Vapnik–Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemerédi for graphs and might be of independent interest. Many open problems remain.


Filomat ◽  
2011 ◽  
Vol 25 (3) ◽  
pp. 29-42 ◽  
Author(s):  
Shilin Wang ◽  
Zhou Bo ◽  
Nenad Trinajstic

The sum-connectivity index of a simple graph G is defined in mathematical chemistry as R+(G) = ? uv?E(G)(du+dv)?1/2, where E(G) is the edge set of G and du is the degree of vertex u in G. We give a best possible lower bound for the sum-connectivity index of a graph (a triangle-free graph, respectively) with n vertices and minimum degree at least two and characterize the extremal graphs, where n ? 11.


10.37236/1085 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $M$ of edges of a graph $G$ is a matching if no two edges in $M$ are incident to the same vertex. The matching number of $G$ is the maximum cardinality of a matching of $G$. A set $S$ of vertices in $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. If $G$ does not contain $K_{1,3}$ as an induced subgraph, then $G$ is said to be claw-free. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number. In this paper, we use transversals in hypergraphs to characterize connected claw-free graphs with minimum degree at least three that have equal total domination and matching numbers.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Jaroslav Nešetřil ◽  
Yared Nigussie

International audience A class of graphs $\mathcal{C}$ ordered by the homomorphism relation is universal if every countable partial order can be embedded in $\mathcal{C}$. It was shown in [ZH] that the class $\mathcal{C_k}$ of $k$-colorable graphs, for any fixed $k≥3$, induces a universal partial order. In [HN1], a surprisingly small subclass of $\mathcal{C_3}$ which is a proper subclass of $K_4$-minor-free graphs $(\mathcal{G/K_4)}$ is shown to be universal. In another direction, a density result was given in [PZ], that for each rational number $a/b ∈[2,8/3]∪ \{3\}$, there is a $K_4$-minor-free graph with circular chromatic number equal to $a/b$. In this note we show for each rational number $a/b$ within this interval the class $\mathcal{K_{a/b}}$ of $0K_4$-minor-free graphs with circular chromatic number $a/b$ is universal if and only if $a/b ≠2$, $5/2$ or $3$. This shows yet another surprising richness of the $K_4$-minor-free class that it contains universal classes as dense as the rational numbers.


Sign in / Sign up

Export Citation Format

Share Document