scholarly journals Bartholdi Zeta Functions of Fractal Graphs

10.37236/119 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Iwao Sato

Recently, Guido, Isola and Lapidus defined the Ihara zeta function of a fractal graph, and gave a determinant expression of it. We define the Bartholdi zeta function of a fractal graph, and present its determinant expression.

10.37236/3561 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Bryan Clair

The infinite grid is the Cayley graph of $\mathbb{Z} \times \mathbb{Z}$ with the usual generators. In this paper, the Ihara zeta function for the infinite grid is computed using elliptic integrals and theta functions. The zeta function of the grid extends to an analytic, multivalued function which satisfies a functional equation. The set of singularities in its domain is finite.The grid zeta function is the first computed example which is non-elementary, and which takes infinitely many values at each point of its domain. It is also the limiting value of the normalized sequence of Ihara zeta functions for square grid graphs and torus graphs.


2006 ◽  
Vol 80 (1) ◽  
pp. 89-103 ◽  
Author(s):  
Cristian Virdol

AbstractIn this paper we compute and continue meromorphically to the whole complex plane the zeta function for twisted modular curves. The twist of the modular curve is done by a modprepresentation of the absolute Galois group.


2018 ◽  
Vol 19 (3) ◽  
pp. 947-964
Author(s):  
Dori Bejleri ◽  
Dhruv Ranganathan ◽  
Ravi Vakil

The motivic Hilbert zeta function of a variety $X$ is the generating function for classes in the Grothendieck ring of varieties of Hilbert schemes of points on $X$. In this paper, the motivic Hilbert zeta function of a reduced curve is shown to be rational.


10.37236/2649 ◽  
2013 ◽  
Vol 20 (1) ◽  
Author(s):  
Iwao Sato ◽  
Hideo Mitsuhasi ◽  
Hideaki Morita
Keyword(s):  

We consider the weighted Bartholdi zeta function of a digraph $D$, and give a new determinant expression of it. Furthermore, we treat a weighted $L$-function of $D$, and give a new determinant expression of it. As a corollary, we present determinant expressions for the Bartholdi edge zeta functions of a graph and a digraph.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1431
Author(s):  
Junesang Choi ◽  
Recep Şahin ◽  
Oğuz Yağcı ◽  
Dojin Kim

A number of generalized Hurwitz–Lerch zeta functions have been presented and investigated. In this study, by choosing a known extended Hurwitz–Lerch zeta function of two variables, which has been very recently presented, in a systematic way, we propose to establish certain formulas and representations for this extended Hurwitz–Lerch zeta function such as integral representations, generating functions, derivative formulas and recurrence relations. We also point out that the results presented here can be reduced to yield corresponding results for several less generalized Hurwitz–Lerch zeta functions than the extended Hurwitz–Lerch zeta function considered here. For further investigation, among possibly various more generalized Hurwitz–Lerch zeta functions than the one considered here, two more generalized settings are provided.


2019 ◽  
Vol 57 (1) ◽  
pp. 23-60
Author(s):  
Ksenia Fedosova ◽  
Julie Rowlett ◽  
Genkai Zhang

Abstract We give an explicit formula for the second variation of the logarithm of the Selberg zeta function, Z(s), on Teichmüller space. We then use this formula to determine the asymptotic behavior as $$\mathfrak {R}s \rightarrow \infty $$Rs→∞ of the second variation. As a consequence, for $$m \in {\mathbb {N}}$$m∈N, we obtain the complete expansion in m of the curvature of the vector bundle $$H^0(X_t, {\mathcal {K}}_t)\rightarrow t\in {\mathcal {T}}$$H0(Xt,Kt)→t∈T of holomorphic m-differentials over the Teichmüller space $${\mathcal {T}}$$T, for m large. Moreover, we show that this curvature agrees with the Quillen curvature up to a term of exponential decay, $$O(m^2 \mathrm{e}^{-l_0 m}),$$O(m2e-l0m), where $$l_0$$l0 is the length of the shortest closed hyperbolic geodesic.


Symmetry ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 754 ◽  
Author(s):  
A. C. L. Ashton ◽  
A. S. Fokas

In this paper, several relations are obtained among the Riemann zeta and Hurwitz zeta functions, as well as their products. A particular case of these relations give rise to a simple re-derivation of the important results of Katsurada and Matsumoto on the mean square of the Hurwitz zeta function. Also, a relation derived here provides the starting point of a novel approach which, in a series of companion papers, yields a formal proof of the Lindelöf hypothesis. Some of the above relations motivate the need for analysing the large α behaviour of the modified Hurwitz zeta function ζ 1 ( s , α ) , s ∈ C , α ∈ ( 0 , ∞ ) , which is also presented here.


Author(s):  
Robert Schneider ◽  
Andrew V. Sills

We examine “partition zeta functions” analogous to the Riemann zeta function but summed over subsets of integer partitions. We prove an explicit formula for a family of partition zeta functions already shown to have nice properties — those summed over partitions of fixed length — which yields complete information about analytic continuation, poles and trivial roots of the zeta functions in the family. Then we present a combinatorial proof of the explicit formula, which shows it to be a zeta function analog of MacMahon’s partial fraction decomposition of the generating function for partitions of fixed length.


2019 ◽  
Vol 571 ◽  
pp. 154-179
Author(s):  
Norio Konno ◽  
Hideo Mitsuhashi ◽  
Hideaki Morita ◽  
Iwao Sato

Sign in / Sign up

Export Citation Format

Share Document