scholarly journals Bijective Census and Random Generation of Eulerian Planar Maps with Prescribed Vertex Degrees

10.37236/1305 ◽  
1997 ◽  
Vol 4 (1) ◽  
Author(s):  
Gilles Schaeffer

Abstract: We give a bijection between Eulerian planar maps with prescribed vertex degrees, and some plane trees that we call balanced Eulerian trees. To enumerate the latter, we introduce conjugation classes of planted plane trees. In particular, the result answers a question of Bender and Canfield and allows uniform random generation of Eulerian planar maps with restricted vertex degrees. Using a well known correspondence between 4-regular planar maps with n vertices and planar maps with n edges we obtain an algorithm to generate uniformly such maps with complexity O(n). Our bijection is also refined to give a combinatorial interpretation of a parameterization of Arquès of the generating function of planar maps with respect to vertices and faces.


10.37236/564 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Toufik Mansour ◽  
Matthias Schork ◽  
Mark Shattuck

A new family of generalized Stirling and Bell numbers is introduced by considering powers $(VU)^n$ of the noncommuting variables $U,V$ satisfying $UV=VU+hV^s$. The case $s=0$ (and $h=1$) corresponds to the conventional Stirling numbers of second kind and Bell numbers. For these generalized Stirling numbers, the recursion relation is given and explicit expressions are derived. Furthermore, they are shown to be connection coefficients and a combinatorial interpretation in terms of statistics is given. It is also shown that these Stirling numbers can be interpreted as $s$-rook numbers introduced by Goldman and Haglund. For the associated generalized Bell numbers, the recursion relation as well as a closed form for the exponential generating function is derived. Furthermore, an analogue of Dobinski's formula is given for these Bell numbers.



2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Paul Levande

International audience We examine the $q=1$ and $t=0$ special cases of the parking functions conjecture. The parking functions conjecture states that the Hilbert series for the space of diagonal harmonics is equal to the bivariate generating function of $area$ and $dinv$ over the set of parking functions. Haglund recently proved that the Hilbert series for the space of diagonal harmonics is equal to a bivariate generating function over the set of Tesler matrices–upper-triangular matrices with every hook sum equal to one. We give a combinatorial interpretation of the Haglund generating function at $q=1$ and prove the corresponding case of the parking functions conjecture (first proven by Garsia and Haiman). We also discuss a possible proof of the $t = 0$ case consistent with this combinatorial interpretation. We conclude by briefly discussing possible refinements of the parking functions conjecture arising from this research and point of view. $\textbf{Note added in proof}$: We have since found such a proof of the $t = 0$ case and conjectured more detailed refinements. This research will most likely be presented in full in a forthcoming article. On examine les cas spéciaux $q=1$ et $t=0$ de la conjecture des fonctions de stationnement. Cette conjecture déclare que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à la fonction génératrice bivariée (paramètres $area$ et $dinv$) sur l'ensemble des fonctions de stationnement. Haglund a prouvé récemment que la série de Hilbert pour l'espace des harmoniques diagonaux est égale à une fonction génératrice bivariée sur l'ensemble des matrices de Tesler triangulaires supérieures dont la somme de chaque équerre vaut un. On donne une interprétation combinatoire de la fonction génératrice de Haglund pour $q=1$ et on prouve le cas correspondant de la conjecture dans le cas des fonctions de stationnement (prouvé d'abord par Garsia et Haiman). On discute aussi d'une preuve possible du cas $t=0$, cohérente avec cette interprétation combinatoire. On conclut en discutant brièvement les raffinements possibles de la conjecture des fonctions de stationnement de ce point de vue. $\textbf{Note ajoutée sur épreuve}$: j'ai trouvé depuis cet article une preuve du cas $t=0$ et conjecturé des raffinements possibles. Ces résultats seront probablement présentés dans un article ultérieur.



2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Mireille Bousquet-Mélou

International audience A self-avoiding walk on the square lattice is $\textit{prudent}$, if it never takes a step towards a vertex it has already visited. Préa was the first to address the enumeration of these walks, in 1997. For 4 natural classes of prudent walks, he wrote a system of recurrence relations, involving the length of the walks and some additional "catalytic'' parameters. The generating function of the first class is easily seen to be rational. The second class was proved to have an algebraic (quadratic) generating function by Duchi (FPSAC'05). Here, we solve exactly the third class, which turns out to be much more complex: its generating function is not algebraic, nor even $D$-finite. The fourth class ―- general prudent walks ―- still defeats us. However, we design an isotropic family of prudent walks on the triangular lattice, which we count exactly. Again, the generating function is proved to be non-$D$-finite. We also study the end-to-end distance of these walks and provide random generation procedures. Un chemin auto-évitant sur le réseau carré est $\textit{prudent}$, s'il ne fait jamais un pas en direction d'un point qu'il a déjà visité. Préa est le premier à avoir cherché à énumérer ces chemins, en 1997. Pour 4 classes naturelles de chemins prudents, il donne un système de relations de récurrence, impliquant la longueur des chemins et plusieurs paramètres "catalytiques'' supplémentaires. La première classe a une série génératrice simple, rationnelle. La deuxième a une série algébrique (quadratique) (Duchi, FPSAC'05). Nous comptons ici les chemins de la troisième classe, et observons un saut de complexité: la série obtenue n'est ni algébrique, ni même différentiellement finie. La quatrième classe, celle des chemins prudents généraux, résiste encore. Cependant, nous définissons un modèle isotrope de chemins prudents sur réseau triangulaire, que nous résolvons de nouveau, la série obtenue n'est pas différentiellement finie. Nous étudions aussi la vitesse d'éloignement de ces chemins, et proposons des algorithmes de génération aléatoire.



2016 ◽  
Vol 12 (03) ◽  
pp. 841-852 ◽  
Author(s):  
Erin Y. Y. Shen

Recently, Andrews introduced the partition function [Formula: see text] as the number of overpartitions of [Formula: see text] in which no part is divisible by [Formula: see text] and only parts [Formula: see text] may be overlined. He proved that [Formula: see text] and [Formula: see text] are divisible by [Formula: see text]. Let [Formula: see text] be the number of overpartitions of [Formula: see text] into parts not divisible by [Formula: see text]. In this paper, we call the overpartitions enumerated by the function [Formula: see text] [Formula: see text]-regular overpartitions. For [Formula: see text] and [Formula: see text], we obtain some explicit results on the generating function dissections. We also derive some congruences for [Formula: see text] modulo [Formula: see text], [Formula: see text] and [Formula: see text] which imply the congruences for [Formula: see text] proved by Andrews. By introducing a rank of vector partitions, we give a combinatorial interpretation of the congruences of Andrews for [Formula: see text] and [Formula: see text].



2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jair Taylor

International audience We develop a method for counting words subject to various restrictions by finding a combinatorial interpretation for a product of formal sums of Laguerre polynomials. We use this method to find the generating function for $k$-ary words avoiding any vincular pattern that has only ones. We also give generating functions for $k$-ary words cyclically avoiding vincular patterns with only ones whose runs of ones between dashes are all of equal length, as well as the analogous results for compositions. Nous développons une méthode pour compter des mots satisfaisants certaines restrictions en établissant une interprétation combinatoire utile d’un produit de sommes formelles de polynômes de Laguerre. Nous utilisons cette méthode pour trouver la série génératrice pour les mots $k$-aires évitant les motifs vinculars consistant uniquement de uns. Nous présentons en suite les séries génératrices pour les mots $k$-aires évitant de façon cyclique les motifs vinculars consistant uniquement de uns et dont chaque série de uns entre deux tirets est de la même longueur. Nous présentons aussi les résultats analogues pour les compositions.



10.37236/3500 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Jair Taylor

We develop a method for counting words subject to various restrictions by finding a combinatorial interpretation for a product of weighted sums of Laguerre polynomials with parameter $\alpha = -1$.  We describe how such a series can be computed by finding an appropriate ordinary generating function and applying a certain transformation. We use this technique to find the generating function for the number of $k$-ary words avoiding any vincular pattern that has only ones, as well as words cyclically avoiding vincular patterns with only ones whose runs of ones between dashes are all of equal length.



10.37236/3472 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Gwendal Collet ◽  
Éric Fusy

We obtain a very simple formula for the generating function of bipartite (resp. quasi-bipartite) planar maps with boundaries (holes) of prescribed lengths, which generalizes certain expressions obtained by Eynard in a book to appear. The formula is derived from a bijection due to Bouttier, Di Francesco and Guitter combined with a process (reminiscent of a construction of Pitman) of aggregating connected components of a forest into a single tree. The formula naturally extends to $p$-constellations and quasi-$p$-constellations with boundaries (the case $p=2$ corresponding to bipartite maps).



2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Gwendal Collet ◽  
Eric Fusy

International audience We obtain a very simple formula for the generating function of bipartite (resp. quasi-bipartite) planar maps with boundaries (holes) of prescribed lengths, which generalizes certain expressions obtained by Eynard in a book to appear. The formula is derived from a bijection due to Bouttier, Di Francesco and Guitter combined with a process (reminiscent of a construction of Pitman) of aggregating connected components of a forest into a single tree. Nous obtenons une formule très simple pour la série génératrice des cartes biparties ayant des bords (trous) de tailles fixées, généralisant certaines expressions obtenues par Eynard dans un livre à paraître. Nous obtenons la formule à partir d'une bijection due à Bouttier, Di Francesco et Guitter, combinée avec un processus (dans l'esprit d'une construction due à Pitman) pour agréger les composantes connexes d'une forêt en un unique arbre.



2017 ◽  
Vol Vol. 18 no. 2, Permutation... (Permutation Patterns) ◽  
Author(s):  
David Bevan

We determine the structure of permutations avoiding the patterns 4213 and 2143. Each such permutation consists of the skew sum of a sequence of plane trees, together with an increasing sequence of points above and an increasing sequence of points to its left. We use this characterisation to establish the generating function enumerating these permutations. We also investigate the properties of a typical large permutation in the class and prove that if a large permutation that avoids 4213 and 2143 is chosen uniformly at random, then it is more likely than not to avoid 2413 as well. Comment: 14 pages



10.37236/1909 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
J.-F. Fortin ◽  
P. Jacob ◽  
P. Mathieu

We present a natural extension of Andrews' multiple sums counting partitions of the form $(\lambda_1,\cdots,\lambda_m)$ with $\lambda_i\geq \lambda_{i+k-1}+2$. The multiple sum that we construct is the generating function for the so-called $K$-restricted jagged partitions. A jagged partition is a sequence of non-negative integers $(n_1,n_2,\cdots , n_m)$ with $n_m\geq 1$ subject to the weakly decreasing conditions $n_i\geq n_{i+1}-1$ and $n_i\geq n_{i+2}$. The $K$-restriction refers to the following additional conditions: $n_i \geq n_{i+K-1} +1$ or $n_i = n_{i+1}-1 = n_{i+K-2}+1= n_{i+K-1}$. The corresponding generalization of the Rogers-Ramunjan identities is displayed, together with a novel combinatorial interpretation.



Sign in / Sign up

Export Citation Format

Share Document