scholarly journals Some Applications of the Proper and Adjacency Polynomials in the Theory of Graph Spectra

10.37236/1306 ◽  
1997 ◽  
Vol 4 (1) ◽  
Author(s):  
M. A. Fiol

Given a vertex $u\in V$ of a graph $G=(V,E)$, the (local) proper polynomials constitute a sequence of orthogonal polynomials, constructed from the so-called $u$-local spectrum of $G$. These polynomials can be thought of as a generalization, for all graphs, of the distance polynomials for the distance-regular graphs. The (local) adjacency polynomials, which are basically sums of proper polynomials, were recently used to study a new concept of distance-regularity for non-regular graphs, and also to give bounds on some distance-related parameters such as the diameter. Here some new applications of both, the proper and adjacency polynomials, are derived, such as bounds for the radius of $G$ and the weight $k$-excess of a vertex. Given the integers $k,\mu\geq 0$, let $G_k^\mu(u)$ denote the set of vertices which are at distance at least $k$ from a vertex $u\in V$, and there exist exactly $\mu$ (shortest) $k$-paths from $u$ to each of such vertices. As a main result, an upper bound for the cardinality of $G_k^\mu(u)$ is derived, showing that $|G_k^\mu(u)|$ decreases at least as $O(\mu^{-2})$, and the cases in which the bound is attained are characterized. When these results are particularized to regular graphs with four distinct eigenvalues, we reobtain a result of Van Dam about 3-class association schemes, and prove some conjectures of Haemers and Van Dam, about the number of vertices at distance three from every vertex of a regular graph with four distinct eigenvalues —setting $k=2$ and $\mu=0$— and, more generally, the number of non-adjacent vertices to every vertex $u\in V$, which have $\mu$ common neighbours with it.


10.37236/172 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
M. Cámara ◽  
J. Fàbrega ◽  
M. A. Fiol ◽  
E. Garriga

We present some related families of orthogonal polynomials of a discrete variable and survey some of their applications in the study of (distance-regular) graphs and (completely regular) codes. One of the main peculiarities of such orthogonal systems is their non-standard normalization condition, requiring that the square norm of each polynomial must equal its value at a given point of the mesh. For instance, when they are defined from the spectrum of a graph, one of these families is the system of the predistance polynomials which, in the case of distance-regular graphs, turns out to be the sequence of distance polynomials. The applications range from (quasi-spectral) characterizations of distance-regular graphs, walk-regular graphs, local distance-regularity and completely regular codes, to some results on representation theory.



2019 ◽  
Vol 12 (07) ◽  
pp. 2050009
Author(s):  
Siwaporn Mamart ◽  
Chalermpong Worawannotai

Merging the first and third classes in a connected graph is the operation of adding edges between all vertices at distance 3 in the original graph while keeping the original edges. We determine when merging the first and third classes in a bipartite distance-regular graph produces a distance-regular graph.



10.37236/2114 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Michael A Henning ◽  
Anders Yeo

An identifying vertex cover in a graph $G$ is a subset $T$ of vertices in $G$ that has a nonempty intersection with every edge of $G$ such that $T$ distinguishes the edges, that is, $e \cap T \ne \emptyset$ for every edge $e$ in $G$ and $e \cap T \ne f \cap T$ for every two distinct edges $e$ and $f$ in $G$. The identifying vertex cover number $\tau_D(G)$ of $G$ is the minimum size of an identifying vertex cover in $G$. We observe that $\tau_D(G) + \rho(G) = |V(G)|$, where $\rho(G)$ denotes the packing number of $G$. We conjecture that if $G$ is a graph of order $n$ and size $m$ with maximum degree $\Delta$, then $\tau_D(G) \le \left( \frac{\Delta(\Delta - 1)}{\Delta^2 + 1} \right) n + \left( \frac{2}{\Delta^2 + 1} \right) m$. If the conjecture is true, then the bound is best possible for all $\Delta \ge 1$. We prove this conjecture when $\Delta \ge 1$ and $G$ is a $\Delta$-regular graph. The three known Moore graphs of diameter two, namely the $5$-cycle, the Petersen graph and the Hoffman-Singleton graph, are examples of regular graphs that achieves equality in the upper bound. We also prove this conjecture when $\Delta \in \{2,3\}$.



2016 ◽  
Vol 26 (2) ◽  
pp. 183-194 ◽  
Author(s):  
EMMA COHEN ◽  
WILL PERKINS ◽  
PRASAD TETALI

We consider the Widom–Rowlinson model of two types of interacting particles on d-regular graphs. We prove a tight upper bound on the occupancy fraction, the expected fraction of vertices occupied by a particle under a random configuration from the model. The upper bound is achieved uniquely by unions of complete graphs on d + 1 vertices, Kd+1. As a corollary we find that Kd+1 also maximizes the normalized partition function of the Widom–Rowlinson model over the class of d-regular graphs. A special case of this shows that the normalized number of homomorphisms from any d-regular graph G to the graph HWR, a path on three vertices with a loop on each vertex, is maximized by Kd+1. This proves a conjecture of Galvin.



2015 ◽  
Vol 478 ◽  
pp. 108-130 ◽  
Author(s):  
G. Coutinho ◽  
C. Godsil ◽  
K. Guo ◽  
F. Vanhove


10.37236/754 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
K. Coolsaet ◽  
J. Degraer

During the past few years we have obtained several new computer classification results on association schemes and in particular distance regular and strongly regular graphs. Central to our success is the use of two algebraic constraints based on properties of the minimal idempotents $E_{i}$ of these association schemes : the fact that they are positive semidefinite and that they have known rank. Incorporating these constraints into an actual isomorph-free exhaustive generation algorithm turns out to be somewhat complicated in practice. The main problem to be solved is that of numerical inaccuracy: we do not want to discard a potential solution because a value which is close to zero is misinterpreted as being negative (in the first case) or nonzero (in the second). In this paper we give details on how this can be accomplished and also list some new classification results that have been recently obtained using this technique: the uniqueness of the strongly regular $(126,50,13,24)$ graph and some new examples of antipodal distance regular graphs. We give an explicit description of a new antipodal distance regular $3$-cover of $K_{14}$, with vertices that can be represented as ordered triples of collinear points of the Fano plane.



2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Ying Ying Tan ◽  
Xiaoye Liang ◽  
Jack Koolen

In the survey paper by Van Dam, Koolen and Tanaka (2016), they asked to classify the thin $Q$-polynomial distance-regular graphs. In this paper, we show that a thin distance-regular graph with the same intersection numbers as a Grassmann graph $J_q(n, D)~ (n \geqslant 2D)$ is the Grassmann graph if $D$ is large enough.



10.37236/8833 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Fiachra Knox ◽  
Bojan Mohar

A new method is introduced for bounding the separation between the value of $-k$ and the smallest eigenvalue of a non-bipartite $k$-regular graph. The method is based on fractional decompositions of graphs. As a consequence we obtain a very short proof of a generalization and strengthening of a recent result of Qiao, Jing, and Koolen [Electronic J. Combin. 26(2) (2019), #P2.41] about the smallest eigenvalue of non-bipartite distance-regular graphs.



10.37236/7347 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Štefko Miklavič

Let $\Gamma$ denote a bipartite distance-regular graph with diameter $D$. In [Caughman (2004)], Caughman showed that if $D \ge 12$, then $\Gamma$ is $Q$-polynomial if and only if one of the following (i)-(iv) holds: (i) $\Gamma$ is the ordinary $2D$-cycle, (ii) $\Gamma$ is the Hamming cube $H(D,2)$, (iii) $\Gamma$ is the antipodal quotient of the Hamming cube $H(2D,2)$, (iv) the intersection numbers of $\Gamma$ satisfy $c_i = (q^i - 1)/(q-1)$, $b_i = (q^D-q^i)/(q-1)$ $(0 \le i \le D)$, where $q$ is an integer at least $2$. In this paper we show that the above result is true also for bipartite distance-regular graphs with $D \in \{9,10,11\}$.



10.37236/4745 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Chris Godsil ◽  
Natalie Mullin ◽  
Aidan Roy

We consider continuous-time quantum walks on distance-regular graphs. Using results about the existence of complex Hadamard matrices in association schemes, we determine which of these graphs have quantum walks that admit uniform mixing.First we apply a result due to Chan to show that the only strongly regular graphs that admit instantaneous uniform mixing are the Paley graph of order nine and certain graphs corresponding to regular symmetric Hadamard matrices with constant diagonal. Next we prove that if uniform mixing occurs on a bipartite graph $X$ with $n$ vertices, then $n$ is divisible by four. We also prove that if $X$ is bipartite and regular, then $n$ is the sum of two integer squares. Our work on bipartite graphs implies that uniform mixing does not occur on $C_{2m}$ for $m \geq 3$. Using a result of Haagerup, we show that uniform mixing does not occur on $C_p$ for any prime $p$ such that $p \geq 5$. In contrast to this result, we see that $\epsilon$-uniform mixing occurs on $C_p$ for all primes $p$.



Sign in / Sign up

Export Citation Format

Share Document