scholarly journals Identifying Vertex Covers in Graphs

10.37236/2114 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Michael A Henning ◽  
Anders Yeo

An identifying vertex cover in a graph $G$ is a subset $T$ of vertices in $G$ that has a nonempty intersection with every edge of $G$ such that $T$ distinguishes the edges, that is, $e \cap T \ne \emptyset$ for every edge $e$ in $G$ and $e \cap T \ne f \cap T$ for every two distinct edges $e$ and $f$ in $G$. The identifying vertex cover number $\tau_D(G)$ of $G$ is the minimum size of an identifying vertex cover in $G$. We observe that $\tau_D(G) + \rho(G) = |V(G)|$, where $\rho(G)$ denotes the packing number of $G$. We conjecture that if $G$ is a graph of order $n$ and size $m$ with maximum degree $\Delta$, then $\tau_D(G) \le \left( \frac{\Delta(\Delta - 1)}{\Delta^2 + 1} \right) n + \left( \frac{2}{\Delta^2 + 1} \right) m$. If the conjecture is true, then the bound is best possible for all $\Delta \ge 1$. We prove this conjecture when $\Delta \ge 1$ and $G$ is a $\Delta$-regular graph. The three known Moore graphs of diameter two, namely the $5$-cycle, the Petersen graph and the Hoffman-Singleton graph, are examples of regular graphs that achieves equality in the upper bound. We also prove this conjecture when $\Delta \in \{2,3\}$.


2016 ◽  
Vol 26 (2) ◽  
pp. 183-194 ◽  
Author(s):  
EMMA COHEN ◽  
WILL PERKINS ◽  
PRASAD TETALI

We consider the Widom–Rowlinson model of two types of interacting particles on d-regular graphs. We prove a tight upper bound on the occupancy fraction, the expected fraction of vertices occupied by a particle under a random configuration from the model. The upper bound is achieved uniquely by unions of complete graphs on d + 1 vertices, Kd+1. As a corollary we find that Kd+1 also maximizes the normalized partition function of the Widom–Rowlinson model over the class of d-regular graphs. A special case of this shows that the normalized number of homomorphisms from any d-regular graph G to the graph HWR, a path on three vertices with a loop on each vertex, is maximized by Kd+1. This proves a conjecture of Galvin.



10.37236/5481 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Jakub Przybyło

The Total Colouring Conjecture suggests that $\Delta+3$ colours ought to suffice in order to provide a proper total colouring of every graph $G$ with maximum degree $\Delta$. Thus far this has been confirmed up to an additive constant factor, and the same holds even if one additionally requires every pair of neighbours in $G$ to differ with respect to the sets of their incident colours, so called pallets. Within this paper we conjecture that an upper bound of the form $\Delta+C$, for a constant $C>0$ still remains valid even after extending the distinction requirement to pallets associated with vertices at distance at most $r$, if only $G$ has minimum degree $\delta$ larger than a constant dependent on $r$. We prove that such assumption on $\delta$ is then unavoidable and exploit the probabilistic method in order to provide two supporting results for the conjecture. Namely, we prove the upper bound $(1+o(1))\Delta$ for every $r$, and show that for any fixed $\epsilon\in(0,1]$ and $r$, the conjecture holds if $\delta\geq \varepsilon\Delta$, i.e., in particular for regular graphs.



10.37236/1351 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Noga Alon ◽  
Vojtech Rödl ◽  
Andrzej Ruciński

A super $(d,\epsilon)$-regular graph on $2n$ vertices is a bipartite graph on the classes of vertices $V_1$ and $V_2$, where $|V_1|=|V_2|=n$, in which the minimum degree and the maximum degree are between $ (d-\epsilon)n$ and $ (d+\epsilon) n$, and for every $U \subset V_1, W \subset V_2$ with $|U| \geq \epsilon n$, $|W| \geq \epsilon n$, $|{{e(U,W) }\over{|U||W|}}-{{e(V_1,V_2)}\over{|V_1||V_2|}}| < \epsilon.$ We prove that for every $1>d >2 \epsilon >0$ and $n>n_0(\epsilon)$, the number of perfect matchings in any such graph is at least $(d-2\epsilon)^n n!$ and at most $(d+2 \epsilon)^n n!$. The proof relies on the validity of two well known conjectures for permanents; the Minc conjecture, proved by Brégman, and the van der Waerden conjecture, proved by Falikman and Egorichev.



10.37236/1699 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
David Cariolaro ◽  
Gianfranco Cariolaro

A petal graph is a connected graph $G$ with maximum degree three, minimum degree two, and such that the set of vertices of degree three induces a $2$–regular graph and the set of vertices of degree two induces an empty graph. We prove here that, with the single exception of the graph obtained from the Petersen graph by deleting one vertex, all petal graphs are Class $1$. This settles a particular case of a conjecture of Hilton and Zhao.



10.37236/1306 ◽  
1997 ◽  
Vol 4 (1) ◽  
Author(s):  
M. A. Fiol

Given a vertex $u\in V$ of a graph $G=(V,E)$, the (local) proper polynomials constitute a sequence of orthogonal polynomials, constructed from the so-called $u$-local spectrum of $G$. These polynomials can be thought of as a generalization, for all graphs, of the distance polynomials for the distance-regular graphs. The (local) adjacency polynomials, which are basically sums of proper polynomials, were recently used to study a new concept of distance-regularity for non-regular graphs, and also to give bounds on some distance-related parameters such as the diameter. Here some new applications of both, the proper and adjacency polynomials, are derived, such as bounds for the radius of $G$ and the weight $k$-excess of a vertex. Given the integers $k,\mu\geq 0$, let $G_k^\mu(u)$ denote the set of vertices which are at distance at least $k$ from a vertex $u\in V$, and there exist exactly $\mu$ (shortest) $k$-paths from $u$ to each of such vertices. As a main result, an upper bound for the cardinality of $G_k^\mu(u)$ is derived, showing that $|G_k^\mu(u)|$ decreases at least as $O(\mu^{-2})$, and the cases in which the bound is attained are characterized. When these results are particularized to regular graphs with four distinct eigenvalues, we reobtain a result of Van Dam about 3-class association schemes, and prove some conjectures of Haemers and Van Dam, about the number of vertices at distance three from every vertex of a regular graph with four distinct eigenvalues —setting $k=2$ and $\mu=0$— and, more generally, the number of non-adjacent vertices to every vertex $u\in V$, which have $\mu$ common neighbours with it.



10.37236/2036 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Florent Foucaud ◽  
Guillem Perarnau

An identifying code is a subset of vertices of a graph such that each vertex is uniquely determined by its neighbourhood within the identifying code. If $\gamma^{\text{ID}}(G)$ denotes the minimum size of an identifying code of a graph $G$, it was conjectured by F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud that there exists a constant $c$ such that if a connected graph $G$ with $n$ vertices and maximum degree $d$ admits an identifying code, then $\gamma^{\text{ID}}(G)\leq n-\tfrac{n}{d}+c$. We use probabilistic tools to show that for any $d\geq 3$, $\gamma^{\text{ID}}(G)\leq n-\tfrac{n}{\Theta(d)}$ holds for a large class of graphs containing, among others, all regular graphs and all graphs of bounded clique number. This settles the conjecture (up to constants) for these classes of graphs. In the general case, we prove $\gamma^{\text{ID}}(G)\leq n-\tfrac{n}{\Theta(d^{3})}$. In a second part, we prove that in any graph $G$ of minimum degree $\delta$ and girth at least 5, $\gamma^{\text{ID}}(G)\leq(1+o_\delta(1))\tfrac{3\log\delta}{2\delta}n$. Using the former result, we give sharp estimates for the size of the minimum identifying code of random $d$-regular graphs, which is about $\tfrac{\log d}{d}n$.



10.37236/431 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Hongliang Lu

Let $r$ and $m$ be two integers such that $r\geq m$. Let $H$ be a graph with order $|H|$, size $e$ and maximum degree $r$ such that $2e\geq |H|r-m$. We find a best lower bound on spectral radius of graph $H$ in terms of $m$ and $r$. Let $G$ be a connected $r$-regular graph of order $|G|$ and $ k < r$ be an integer. Using the previous results, we find some best upper bounds (in terms of $r$ and $k$) on the third largest eigenvalue that is sufficient to guarantee that $G$ has a $k$-factor when $k|G|$ is even. Moreover, we find a best bound on the second largest eigenvalue that is sufficient to guarantee that $G$ is $k$-critical when $k|G|$ is odd. Our results extend the work of Cioabă, Gregory and Haemers [J. Combin. Theory Ser. B, 1999] who obtained such results for 1-factors.



2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Weizhong Wang ◽  
Dong Yang

LetGbe a simple graph. The incidence energy (IEfor short) ofGis defined as the sum of the singular values of the incidence matrix. In this paper, a new upper bound forIEof graphs in terms of the maximum degree is given. Meanwhile, bounds forIEof the line graph of a semiregular graph and the paraline graph of a regular graph are obtained.



Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).



2021 ◽  
pp. 97-104
Author(s):  
M. B. Abrosimov ◽  
◽  
S. V. Kostin ◽  
I. V. Los ◽  
◽  
...  

In 2015, the results were obtained for the maximum number of vertices nk in regular graphs of a given order k with a diameter 2: n2 = 5, n3 = 10, n4 = 15. In this paper, we investigate a similar question about the largest number of vertices npk in a primitive regular graph of order k with exponent 2. All primitive regular graphs with exponent 2, except for the complete one, also have diameter d = 2. The following values were obtained for primitive regular graphs with exponent 2: np2 = 3, np3 = 4, np4 = 11.



Sign in / Sign up

Export Citation Format

Share Document