scholarly journals Colouring Planar Mixed Hypergraphs

10.37236/1538 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
André Kündgen ◽  
Eric Mendelsohn ◽  
Vitaly Voloshin

A mixed hypergraph is a triple ${\cal H} = (V,{\cal C}, {\cal D})\;$ where $V$ is the vertex set and ${\cal C}$ and ${\cal D}$ are families of subsets of $V$, the ${\cal C}$-edges and ${\cal D}$-edges, respectively. A $k$-colouring of ${\cal H}$ is a mapping $c: V\rightarrow [k]$ such that each ${\cal C}$-edge has at least two vertices with a ${\cal C}$ommon colour and each ${\cal D}$-edge has at least two vertices of ${\cal D}$ifferent colours. ${\cal H}$ is called a planar mixed hypergraph if its bipartite representation is a planar graph. Classic graphs are the special case of mixed hypergraphs when ${\cal C}=\emptyset$ and all the ${\cal D}$-edges have size 2, whereas in a bi-hypergraph ${\cal C} = {\cal D}$. We investigate the colouring properties of planar mixed hypergraphs. Specifically, we show that maximal planar bi-hypergraphs are 2-colourable, find formulas for their chromatic polynomial and chromatic spectrum in terms of 2-factors in the dual, prove that their chromatic spectrum is gap-free and provide a sharp estimate on the maximum number of colours in a colouring.


10.37236/1772 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniel Král

A mixed hypergraph $H$ is a triple $(V,{\cal C},{\cal D})$ where $V$ is the vertex set and ${\cal C}$ and ${\cal D}$ are families of subsets of $V$, called ${\cal C}$-edges and ${\cal D}$-edges. A vertex coloring of $H$ is proper if each ${\cal C}$-edge contains two vertices with the same color and each ${\cal D}$-edge contains two vertices with different colors. The spectrum of $H$ is a vector $(r_1,\ldots,r_m)$ such that there exist exactly $r_i$ different colorings using exactly $i$ colors, $r_m\ge 1$ and there is no coloring using more than $m$ colors. The feasible set of $H$ is the set of all $i$'s such that $r_i\ne 0$. We construct a mixed hypergraph with $O(\sum_i\log r_i)$ vertices whose spectrum is equal to $(r_1,\ldots,r_m)$ for each vector of non-negative integers with $r_1=0$. We further prove that for any fixed finite sets of positive integers $A_1\subset A_2$ ($1\notin A_2$), it is NP-hard to decide whether the feasible set of a given mixed hypergraph is equal to $A_2$ even if it is promised that it is either $A_1$ or $A_2$. This fact has several interesting corollaries, e.g., that deciding whether a feasible set of a mixed hypergraph is gap-free is both NP-hard and coNP-hard.



Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 828
Author(s):  
Nicholas Newman ◽  
Vitaly Voloshin

In colorings of some block designs, the vertices of blocks can be thought of as hyperedges of a hypergraph H that can be placed on a circle and colored according to some rules that are related to colorings of circular mixed hypergraphs. A mixed hypergraph H is called circular if there exists a host cycle on the vertex set X such that every edge (C- or D-) induces a connected subgraph of this cycle. We propose an algorithm to color the (r,r)-uniform, complete, circular, mixed hypergraphs for all feasible values with no gaps. In doing so, we show χ(H)=2 and χ¯(H)=n−s or n−s−1 where s is the sieve number.



10.37236/1171 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Ping Zhao ◽  
Kefeng Diao ◽  
Kaishun Wang

For any set $S$ of positive integers, a mixed hypergraph ${\cal H}$ is a realization of $S$ if its feasible set is $S$, furthermore, ${\cal H}$ is a one-realization of $S$ if it is a realization of $S$ and each entry of its chromatic spectrum is either 0 or 1. Jiang et al. showed that the minimum number of vertices of a realization of $\{s,t\}$ with $2\leq s\leq t-2$ is $2t-s$. Král proved that there exists a one-realization of $S$ with at most $|S|+2\max{S}-\min{S}$ vertices. In this paper, we  determine the number  of vertices of the smallest one-realization of a given set. As a result, we partially solve an open problem proposed by Jiang et al. in 2002 and by Král  in 2004.



2016 ◽  
Vol 09 (01) ◽  
pp. 1650013
Author(s):  
L. Asgharsharghi ◽  
S. M. Sheikholeslami ◽  
L. Volkmann

A 2-rainbow dominating function (2RDF) of a graph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text], the condition [Formula: see text] is fulfilled. The weight of a 2RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a 2RDF of [Formula: see text]. The rainbow bondage number [Formula: see text] of a graph [Formula: see text] with maximum degree at least two is the minimum cardinality of all sets [Formula: see text] for which [Formula: see text]. Dehgardi, Sheikholeslami and Volkmann, [The [Formula: see text]-rainbow bondage number of a graph, Discrete Appl. Math. 174 (2014) 133–139] proved that the rainbow bondage number of a planar graph does not exceed 15. In this paper, we generalize their result for graphs which admit a [Formula: see text]-cell embedding on a surface with non-negative Euler characteristic.



10.37236/1550 ◽  
2000 ◽  
Vol 8 (1) ◽  
Author(s):  
Giovanni Lo Faro ◽  
Lorenzo Milazzo ◽  
Antoinette Tripodi

A mixed hypergraph is characterized by the fact that it possesses ${\cal C}$-edges as well as ${\cal D}$-edges. In a colouring of a mixed hypergraph, every ${\cal C}$-edge has at least two vertices of the same colour and every ${\cal D}$-edge has at least two vertices coloured differently. The upper and lower chromatic numbers $\bar{\chi}$, $\chi$ are the maximum and minimum numbers of colours for which there exists a colouring using all the colours. The concepts of mixed hypergraph, upper and lower chromatic numbers are applied to $SQSs$. In fact a BSQS is an SQS where all the blocks are at the same time ${\cal C}$-edges and ${\cal D}$-edges. In this paper we prove that any $BSQS(16)$ is colourable with the upper chromatic number $\bar{\chi}=3$ and we give new information about the chromatic spectrum of BSQSs($16$).



10.37236/773 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Jeremy F. Alm ◽  
Roger D. Maddux ◽  
Jacob Manske

Let $K_{N}$ denote the complete graph on $N$ vertices with vertex set $V = V(K_{N})$ and edge set $E = E(K_{N})$. For $x,y \in V$, let $xy$ denote the edge between the two vertices $x$ and $y$. Let $L$ be any finite set and ${\cal M} \subseteq L^{3}$. Let $c : E \rightarrow L$. Let $[n]$ denote the integer set $\{1, 2, \ldots, n\}$. For $x,y,z \in V$, let $c(xyz)$ denote the ordered triple $\big(c(xy)$, $c(yz), c(xz)\big)$. We say that $c$ is good with respect to ${\cal M}$ if the following conditions obtain: 1. $\forall x,y \in V$ and $\forall (c(xy),j,k) \in {\cal M}$, $\exists z \in V$ such that $c(xyz) = (c(xy),j,k)$; 2. $\forall x,y,z \in V$, $c(xyz) \in {\cal M}$; and 3. $\forall x \in V \ \forall \ell\in L \ \exists \, y\in V$ such that $ c(xy)=\ell $. We investigate particular subsets ${\cal M}\subseteq L^{3}$ and those edge colorings of $K_{N}$ which are good with respect to these subsets ${\cal M}$. We also remark on the connections of these subsets and colorings to projective planes, Ramsey theory, and representations of relation algebras. In particular, we prove a special case of the flexible atom conjecture.



10.37236/3509 ◽  
2015 ◽  
Vol 22 (1) ◽  
Author(s):  
M. Montassier ◽  
P. Ochem

A graph $G$ is $(d_1,...,d_l)$-colorable if the vertex set of $G$ can be partitioned into subsets $V_1,\ldots ,V_l$ such that the graph $G[V_i]$ induced by the vertices of $V_i$ has maximum degree at most $d_i$ for all $1 \leq i \leq l$. In this paper, we focus on complexity aspects of such colorings when $l=2,3$. More precisely, we prove that, for any fixed integers $k,j,g$ with $(k,j) \neq (0,0)$ and $g\geq3$, either every planar graph with girth at least $g$ is $(k,j)$-colorable or it is NP-complete to determine whether a planar graph with girth at least $g$ is $(k,j)$-colorable. Also, for any fixed integer $k$, it is NP-complete to determine whether a planar graph that is either $(0,0,0)$-colorable or non-$(k,k,1)$-colorable is $(0,0,0)$-colorable. Additionally, we exhibit non-$(3,1)$-colorable planar graphs with girth 5 and non-$(2,0)$-colorable planar graphs with girth 7. 



1974 ◽  
Vol 26 (4) ◽  
pp. 806-819
Author(s):  
Kenneth W. Lebensold

In this paper, we are concerned with the following problem: Let S be a finite set and Sm* ⊂ 2S a collection of subsets of S each of whose members has m elements (m a positive integer). Let f be a real-valued function on S and, for p ∊ Sm*, define f(P) as Σs∊pf (s). We seek the minimum (or maximum) of the function f on the set Sm*.The Traveling Salesman Problem is to find the cheapest polygonal path through a given set of vertices, given the cost of getting from any vertex to any other. It is easily seen that the Traveling Salesman Problem is a special case of this system, where S is the set of all edges joining pairs of points in the vertex set, Sm* is the set of polygons, each polygon has m elements (m = no. of points in the vertex set = no. of edges per polygon), and f is the cost function.



2018 ◽  
Vol 27 (6) ◽  
pp. 988-998 ◽  
Author(s):  
THOMAS J. PERRETT ◽  
CARSTEN THOMASSEN

We prove that the roots of the chromatic polynomials of planar graphs are dense in the interval between 32/27 and 4, except possibly in a small interval around τ + 2 where τ is the golden ratio. This interval arises due to a classical result of Tutte, which states that the chromatic polynomial of every planar graph takes a positive value at τ + 2. Our results lead us to conjecture that τ + 2 is the only such number less than 4.



10.37236/9391 ◽  
2020 ◽  
Vol 27 (4) ◽  
Author(s):  
Zdeněk Dvořák ◽  
Carl Feghali

The reconfiguration graph $R_k(G)$ for the $k$-colorings of a graph~$G$ has as vertex set the set of all possible proper $k$-colorings of $G$ and two colorings are adjacent if they differ in the color of exactly one vertex. A result of Bousquet and Perarnau (2016) regarding graphs of bounded degeneracy implies that if $G$ is a planar graph with $n$ vertices, then $R_{12}(G)$ has diameter at most $6n$. We improve on the number of colors, showing that $R_{10}(G)$ has diameter at most $8n$ for every planar graph $G$ with $n$ vertices.



Sign in / Sign up

Export Citation Format

Share Document