scholarly journals Chromatic Graphs, Ramsey Numbers and the Flexible Atom Conjecture

10.37236/773 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Jeremy F. Alm ◽  
Roger D. Maddux ◽  
Jacob Manske

Let $K_{N}$ denote the complete graph on $N$ vertices with vertex set $V = V(K_{N})$ and edge set $E = E(K_{N})$. For $x,y \in V$, let $xy$ denote the edge between the two vertices $x$ and $y$. Let $L$ be any finite set and ${\cal M} \subseteq L^{3}$. Let $c : E \rightarrow L$. Let $[n]$ denote the integer set $\{1, 2, \ldots, n\}$. For $x,y,z \in V$, let $c(xyz)$ denote the ordered triple $\big(c(xy)$, $c(yz), c(xz)\big)$. We say that $c$ is good with respect to ${\cal M}$ if the following conditions obtain: 1. $\forall x,y \in V$ and $\forall (c(xy),j,k) \in {\cal M}$, $\exists z \in V$ such that $c(xyz) = (c(xy),j,k)$; 2. $\forall x,y,z \in V$, $c(xyz) \in {\cal M}$; and 3. $\forall x \in V \ \forall \ell\in L \ \exists \, y\in V$ such that $ c(xy)=\ell $. We investigate particular subsets ${\cal M}\subseteq L^{3}$ and those edge colorings of $K_{N}$ which are good with respect to these subsets ${\cal M}$. We also remark on the connections of these subsets and colorings to projective planes, Ramsey theory, and representations of relation algebras. In particular, we prove a special case of the flexible atom conjecture.


2019 ◽  
Author(s):  
Jan Corsten ◽  
Louis DeBiasio ◽  
Ander Lamaison ◽  
Richard Lang

Ramsey Theory investigates the existence of large monochromatic substructures. Unlike the most classical case of monochromatic complete subgraphs, the maximum guaranteed length of a monochromatic path in a two-edge-colored complete graph is well-understood. Gerencsér and Gyárfás in 1967 showed that any two-edge-coloring of a complete graph Kn contains a monochromatic path with ⌊2n/3⌋+1 vertices. The following two-edge-coloring shows that this is the best possible: partition the vertices of Kn into two sets A and B such that |A|=⌊n/3⌋ and |B|=⌈2n/3⌉, and color the edges between A and B red and edges inside each of the sets blue. The longest red path has 2|A|+1 vertices and the longest blue path has |B| vertices. The main result of this paper concerns the corresponding problem for countably infinite graphs. To measure the size of a monochromatic subgraph, we associate the vertices with positive integers and consider the lower and the upper density of the vertex set of a monochromatic subgraph. The upper density of a subset A of positive integers is the limit superior of |A∩{1,...,}|/n, and the lower density is the limit inferior. The following example shows that there need not exist a monochromatic path with positive upper density such that its vertices form an increasing sequence: an edge joining vertices i and j is colored red if ⌊log2i⌋≠⌊log2j⌋, and blue otherwise. In particular, the coloring yields blue cliques with 1, 2, 4, 8, etc., vertices mutually joined by red edges. Likewise, there are constructions of two-edge-colorings such that the lower density of every monochromatic path is zero. A result of Rado from the 1970's asserts that the vertices of any k-edge-colored countably infinite complete graph can be covered by k monochromatic paths. For a two-edge-colored complete graph on the positive integers, this implies the existence of a monochromatic path with upper density at least 1/2. In 1993, Erdős and Galvin raised the problem of determining the largest c such that every two-edge-coloring of the complete graph on the positive integers contains a monochromatic path with upper density at least c. The authors solve this 25-year-old problem by showing that c=(12+8–√)/17≈0.87226.



1974 ◽  
Vol 26 (4) ◽  
pp. 806-819
Author(s):  
Kenneth W. Lebensold

In this paper, we are concerned with the following problem: Let S be a finite set and Sm* ⊂ 2S a collection of subsets of S each of whose members has m elements (m a positive integer). Let f be a real-valued function on S and, for p ∊ Sm*, define f(P) as Σs∊pf (s). We seek the minimum (or maximum) of the function f on the set Sm*.The Traveling Salesman Problem is to find the cheapest polygonal path through a given set of vertices, given the cost of getting from any vertex to any other. It is easily seen that the Traveling Salesman Problem is a special case of this system, where S is the set of all edges joining pairs of points in the vertex set, Sm* is the set of polygons, each polygon has m elements (m = no. of points in the vertex set = no. of edges per polygon), and f is the cost function.



10.37236/2121 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Shinya Fujita ◽  
Michitaka Furuya ◽  
András Gyárfás ◽  
Ágnes Tóth

We show that two results on covering of edge colored graphs by monochromatic connected parts can be extended to partitioning. We prove that for any $2$-edge-colored non-trivial $r$-uniform hypergraph $H$, the vertex set can be partitioned into at most $\alpha (H)-r+2$ monochromatic connected parts, where $\alpha (H)$ is the maximum number of vertices that does not contain any edge. In particular, any $2$-edge-colored graph $G$ can be partitioned into $\alpha(G)$ monochromatic connected parts, where $\alpha (G)$ denotes the independence number of $G$. This extends König's theorem, a special case of Ryser's conjecture. Our second result is about Gallai-colorings, i.e. edge-colorings of graphs without $3$-edge-colored triangles. We show that for any Gallai-coloring of a graph $G$, the vertex set of $G$ can be partitioned into monochromatic connected parts, where the number of parts depends only on $\alpha(G)$. This extends its cover-version proved earlier by Simonyi and two of the authors.



2003 ◽  
Vol 126 (2-3) ◽  
pp. 167-179 ◽  
Author(s):  
Li Guiqing ◽  
Su Wenlong ◽  
Luo Haipeng


Author(s):  
ANTÓNIO GIRÃO ◽  
BHARGAV NARAYANAN

Abstract We prove Turán-type theorems for two related Ramsey problems raised by Bollobás and by Fox and Sudakov. First, for t ≥ 3, we show that any two-colouring of the complete graph on n vertices that is δ-far from being monochromatic contains an unavoidable t-colouring when δ ≫ n−1/t, where an unavoidable t-colouring is any two-colouring of a clique of order 2t in which one colour forms either a clique of order t or two disjoint cliques of order t. Next, for t ≥ 3, we show that any tournament on n vertices that is δ-far from being transitive contains an unavoidable t-tournament when δ ≫ n−1/[t/2], where an unavoidable t-tournament is the blow-up of a cyclic triangle obtained by replacing each vertex of the triangle by a transitive tournament of order t. Conditional on a well-known conjecture about bipartite Turán numbers, both our results are sharp up to implied constants and hence determine the order of magnitude of the corresponding off-diagonal Ramsey numbers.



2008 ◽  
Vol 308 (17) ◽  
pp. 3986-3991 ◽  
Author(s):  
E.L. Monte Carmelo


2011 ◽  
Vol 2011 ◽  
pp. 1-9
Author(s):  
M. M. M. Jaradat ◽  
M. S. A. Bataineh ◽  
S. M. E. Radaideh

The graph Ramsey number is the smallest integer with the property that any complete graph of at least vertices whose edges are colored with two colors (say, red and blue) contains either a subgraph isomorphic to all of whose edges are red or a subgraph isomorphic to all of whose edges are blue. In this paper, we consider the Ramsey numbers for theta graphs. We determine , for . More specifically, we establish that for . Furthermore, we determine for . In fact, we establish that if is even, if is odd.



1973 ◽  
Vol 63 (5) ◽  
pp. 1571-1582
Author(s):  
A. M. Abo-Zena ◽  
Chi-Yu King

abstract This paper gives an analysis of the response of an elastic wedge of arbitrary angle to an impulsive SH source applied on the wedge surface along a line parallel to the edge of the wedge. A two-dimensional time-dependent Green's function for SH waves is constructed from an integral-transform approach. The result is given in a closed form for the incident and the reflected pulses and in an integral form for the diffracted pulse from the edge. For the special case that the wedge angle is an integral fraction of π, the result is interpretable in terms of a finite set of image sources with no diffraction effect. Numerical examples are given for illustration.



10.37236/2582 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Tamás Héger ◽  
Marcella Takáts

In a graph $\Gamma=(V,E)$ a vertex $v$ is resolved by a vertex-set $S=\{v_1,\ldots,v_n\}$ if its (ordered) distance list with respect to $S$, $(d(v,v_1),\ldots,d(v,v_n))$, is unique. A set $A\subset V$ is resolved by $S$ if all its elements are resolved by $S$. $S$ is a resolving set in $\Gamma$ if it resolves $V$. The metric dimension of $\Gamma$ is the size of the smallest resolving set in it. In a bipartite graph a semi-resolving set is a set of vertices in one of the vertex classes that resolves the other class.We show that the metric dimension of the incidence graph of a finite projective plane of order $q\geq 23$ is $4q-4$, and describe all resolving sets of that size. Let $\tau_2$ denote the size of the smallest double blocking set in PG$(2,q)$, the Desarguesian projective plane of order $q$. We prove that for a semi-resolving set $S$ in the incidence graph of PG$(2,q)$, $|S|\geq \min \{2q+q/4-3, \tau_2-2\}$ holds. In particular, if $q\geq9$ is a square, then the smallest semi-resolving set in PG$(2,q)$ has size $2q+2\sqrt{q}$. As a corollary, we get that a blocking semioval in PG$(2, q)$, $q\geq 4$, has at least $9q/4-3$ points. A corrigendum was added to this paper on March 3, 2017.



1979 ◽  
Vol 80 (2) ◽  
pp. 435-441 ◽  
Author(s):  
Frank Harary ◽  
Robert Robinson
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document