scholarly journals Metric Dimension for Random Graphs

10.37236/2639 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Béla Bollobás ◽  
Dieter Mitsche ◽  
Paweł Prałat

The metric dimension of a graph $G$ is the minimum number of vertices in a subset $S$ of the vertex set of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $S$. In this paper we investigate the metric dimension of the random graph $G(n,p)$ for a wide range of probabilities $p=p(n)$.

Author(s):  
G. R. Grimmett ◽  
C. J. H. McDiarmid

AbstractLet ωn denote a random graph with vertex set {1, 2, …, n}, such that each edge is present with a prescribed probability p, independently of the presence or absence of any other edges. We show that the number of vertices in the largest complete subgraph of ωn is, with probability one,


2013 ◽  
Vol 05 (04) ◽  
pp. 1250060 ◽  
Author(s):  
LINDA EROH ◽  
CONG X. KANG ◽  
EUNJEONG YI

The metric dimension of a graph G, denoted by dim (G), is the minimum number of vertices such that each vertex is uniquely determined by its distances to the chosen vertices. Let G1and G2be disjoint copies of a graph G and let f : V(G1) → V(G2) be a function. Then a functigraphC(G, f) = (V, E) has the vertex set V = V(G1) ∪ V(G2) and the edge set E = E(G1) ∪ E(G2) ∪ {uv | v = f(u)}. We study how metric dimension behaves in passing from G to C(G, f) by first showing that 2 ≤ dim (C(G, f)) ≤ 2n - 3, if G is a connected graph of order n ≥ 3 and f is any function. We further investigate the metric dimension of functigraphs on complete graphs and on cycles.


2006 ◽  
Vol 38 (02) ◽  
pp. 287-298 ◽  
Author(s):  
Maria Deijfen ◽  
Ronald Meester

Let F be a probability distribution with support on the nonnegative integers. We describe two algorithms for generating a stationary random graph, with vertex set ℤ, in which the degrees of the vertices are independent, identically distributed random variables with distribution F. Focus is on an algorithm generating a graph in which, initially, a random number of ‘stubs’ with distribution F is attached to each vertex. Each stub is then randomly assigned a direction (left or right) and the edge configuration obtained by pairing stubs pointing to each other, first exhausting all possible connections between nearest neighbors, then linking second-nearest neighbors, and so on. Under the assumption that F has finite mean, it is shown that this algorithm leads to a well-defined configuration, but that the expected length of the shortest edge attached to a given vertex is infinite. It is also shown that any stationary algorithm for pairing stubs with random, independent directions causes the total length of the edges attached to a given vertex to have infinite mean. Connections to the problem of constructing finitary isomorphisms between Bernoulli shifts are discussed.


Author(s):  
G. R. Grimmett ◽  
M. Keane ◽  
J. M. Marstrand

AbstractLet p = (p(i): i ≥ 0) be a sequence of numbers satisfying 0 ≤ p(i) < 1 for i = 0,1,2,…, and let G be a random graph with vertex set ℤ = {…, — 1, 0, 1,…} and with edge set defined as follows: for each pair i, j of vertices, where i ≤ j, there is an edge joining i and j with probability p(j — i), independently of the presence or absence of all other edges. We explore the connectedness of G, showing that G is almost surely connected if and only if Σip(i) = ∞ and the (positive) greatest common divisor of the set {i ≥ 1: p(i) < 0} equals 1; if one of these two conditions fails to hold then G is almost surely disconnected. Corresponding results hold in higher dimensions, for random graphs defined on the vertex sets ℤd where d ≥ 2.


10.37236/7040 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Michael Anastos ◽  
Alan Frieze ◽  
Wesley Pegden

Let $\Omega_q$ denote the set of proper $[q]$-colorings of the random graph $G_{n,m}, m=dn/2$ and let $H_q$ be the graph with vertex set $\Omega_q$ and an edge $\{\sigma,\tau\}$ where $\sigma,\tau$ are mappings $[n]\to[q]$ iff $h(\sigma,\tau)=1$. Here $h(\sigma,\tau)$ is the Hamming distance $|\{v\in [n]:\sigma(v)\neq\tau(v)\}|$. We show that w.h.p. $H_q$ contains a single giant component containing almost all colorings in $\Omega_q$ if $d$ is sufficiently large and $q\geq \frac{cd}{\log d}$ for a constant $c>3/2$.


2019 ◽  
Vol 29 (2) ◽  
pp. 213-233
Author(s):  
Annika Heckel

AbstractAn equitable colouring of a graph G is a vertex colouring where no two adjacent vertices are coloured the same and, additionally, the colour class sizes differ by at most 1. The equitable chromatic number χ=(G) is the minimum number of colours required for this. We study the equitable chromatic number of the dense random graph ${\mathcal{G}(n,m)}$ where $m = \left\lfloor {p\left( \matrix{ n \cr 2 \cr} \right)} \right\rfloor $ and 0 < p < 0.86 is constant. It is a well-known question of Bollobás [3] whether for p = 1/2 there is a function f(n) → ∞ such that, for any sequence of intervals of length f(n), the normal chromatic number of ${\mathcal{G}(n,m)}$ lies outside the intervals with probability at least 1/2 if n is large enough. Bollobás proposes that this is likely to hold for f(n) = log n. We show that for the equitable chromatic number, the answer to the analogous question is negative. In fact, there is a subsequence ${({n_j})_j}_{ \in {\mathbb {N}}}$ of the integers where $\chi_=({\mathcal{G}(n_j,m_j)})$ is concentrated on exactly one explicitly known value. This constitutes surprisingly narrow concentration since in this range the equitable chromatic number, like the normal chromatic number, is rather large in absolute value, namely asymptotically equal to n/(2logbn) where b = 1/(1 − p).


2006 ◽  
Vol 38 (2) ◽  
pp. 287-298 ◽  
Author(s):  
Maria Deijfen ◽  
Ronald Meester

Let F be a probability distribution with support on the nonnegative integers. We describe two algorithms for generating a stationary random graph, with vertex set ℤ, in which the degrees of the vertices are independent, identically distributed random variables with distribution F. Focus is on an algorithm generating a graph in which, initially, a random number of ‘stubs’ with distribution F is attached to each vertex. Each stub is then randomly assigned a direction (left or right) and the edge configuration obtained by pairing stubs pointing to each other, first exhausting all possible connections between nearest neighbors, then linking second-nearest neighbors, and so on. Under the assumption that F has finite mean, it is shown that this algorithm leads to a well-defined configuration, but that the expected length of the shortest edge attached to a given vertex is infinite. It is also shown that any stationary algorithm for pairing stubs with random, independent directions causes the total length of the edges attached to a given vertex to have infinite mean. Connections to the problem of constructing finitary isomorphisms between Bernoulli shifts are discussed.


2011 ◽  
Vol 20 (5) ◽  
pp. 763-775 ◽  
Author(s):  
VALENTAS KURAUSKAS ◽  
COLIN McDIARMID

The classical Erdős–Pósa theorem states that for each positive integer k there is an f(k) such that, in each graph G which does not have k + 1 disjoint cycles, there is a blocker of size at most f(k); that is, a set B of at most f(k) vertices such that G−B has no cycles. We show that, amongst all such graphs on vertex set {1,. . .,n}, all but an exponentially small proportion have a blocker of size k. We also give further properties of a random graph sampled uniformly from this class, concerning uniqueness of the blocker, connectivity, chromatic number and clique number.A key step in the proof of the main theorem is to show that there must be a blocker as in the Erdős–Pósa theorem with the extra ‘redundancy’ property that B–v is still a blocker for all but at most k vertices v ∈ B.


10.37236/4777 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Paweł Prałat

We consider a variant of the game of Cops and Robbers, called Containment, in which cops move from edge to adjacent edge, the robber moves from vertex to adjacent vertex (but cannot move along an edge occupied by a cop). The cops win by "containing'' the robber, that is, by occupying all edges incident with a vertex occupied by the robber. The minimum number of cops, $\xi(G)$, required to contain a robber played on a graph $G$ is called the containability number, a natural counterpart of the well-known cop number $c(G)$. This variant of the game was recently introduced by Komarov and Mackey, who proved that for every graph $G$, $c(G) \le \xi(G) \le \gamma(G) \Delta(G)$, where $\gamma(G)$ and $\Delta(G)$ are the domination number and the maximum degree of $G$, respectively. They conjecture that an upper bound can be improved and, in fact, $\xi(G) \le c(G) \Delta(G)$. (Observe that, trivially, $c(G) \le \gamma(G)$.) This seems to be the main question for this game at the moment. By investigating expansion properties, we provide asymptotically almost sure bounds on the containability number of binomial random graphs $\mathcal{G}(n,p)$ for a wide range of $p=p(n)$, showing that it forms an intriguing zigzag shape. This result also proves that the conjecture holds for some range of $p$ (or holds up to a constant or an $O(\log n)$ multiplicative factors for some other ranges).


Author(s):  
Mark Newman

An introduction to the mathematics of the Poisson random graph, the simplest model of a random network. The chapter starts with a definition of the model, followed by derivations of basic properties like the mean degree, degree distribution, and clustering coefficient. This is followed with a detailed derivation of the large-scale structural properties of random graphs, including the position of the phase transition at which a giant component appears, the size of the giant component, the average size of the small components, and the expected diameter of the network. The chapter ends with a discussion of some of the shortcomings of the random graph model.


Sign in / Sign up

Export Citation Format

Share Document