scholarly journals Polynomials with Real Zeros and Compatible Sequences

10.37236/2674 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Li Liu

In this paper, we study polynomials with only real zeros based on the method of compatible zeros. We obtain a necessary and sufficient condition for the compatible property of two polynomials whose leading coefficients have opposite sign. As applications, we partially answer a question proposed by M. Chudnovsky and P. Seymour in the recent publication [M. Chudnovsky, P. Seymour, The roots of the independence polynomial of a clawfree graph, J. Combin. Theory Ser. B 97 (2007) 350--357]. We also establish the connection between the interlacing property and the compatible property of two polynomials and give a simple proof of some known results.

1972 ◽  
Vol 18 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Ian Anderson

A graph G is said to possess a perfect matching if there is a subgraph of G consisting of disjoint edges which together cover all the vertices of G. Clearly G must then have an even number of vertices. A necessary and sufficient condition for G to possess a perfect matching was obtained by Tutte (3). If S is any set of vertices of G, let p(S) denote the number of components of the graph G – S with an odd number of vertices. Then the conditionis both necessary and sufficient for the existence of a perfect matching. A simple proof of this result is given in (1).


1960 ◽  
Vol 16 ◽  
pp. 35-50 ◽  
Author(s):  
Bertram Kostant

1. Introduction and statement of theorem. 1. In [1] Ambrose and Singer gave a necessary and sufficient condition (Theorem 3 here) for a simply connected complete Riemannian manifold to admit a transitive group of motions. Here we shall give a simple proof of a more general theorem — Theorem 1 (the proof of Theorem 1 became suggestive to us after we noted that the Tx of [1] is just the ax of [6] when X is restricted to p0, see [6], p. 539).


2003 ◽  
Vol 17 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Mark H. Taylor ◽  
F. Todd DeZoort ◽  
Edward Munn ◽  
Martha Wetterhall Thomas

This paper introduces an auditor reliability framework that repositions the role of auditor independence in the accounting profession. The framework is motivated in part by widespread confusion about independence and the auditing profession's continuing problems with managing independence and inspiring public confidence. We use philosophical, theoretical, and professional arguments to argue that the public interest will be best served by reprioritizing professional and ethical objectives to establish reliability in fact and appearance as the cornerstone of the profession, rather than relationship-based independence in fact and appearance. This revised framework requires three foundation elements to control subjectivity in auditors' judgments and decisions: independence, integrity, and expertise. Each element is a necessary but not sufficient condition for maximizing objectivity. Objectivity, in turn, is a necessary and sufficient condition for achieving and maintaining reliability in fact and appearance.


Author(s):  
Thomas Sinclair

The Kantian account of political authority holds that the state is a necessary and sufficient condition of our freedom. We cannot be free outside the state, Kantians argue, because any attempt to have the “acquired rights” necessary for our freedom implicates us in objectionable relations of dependence on private judgment. Only in the state can this problem be overcome. But it is not clear how mere institutions could make the necessary difference, and contemporary Kantians have not offered compelling explanations. A detailed analysis is presented of the problems Kantians identify with the state of nature and the objections they face in claiming that the state overcomes them. A response is sketched on behalf of Kantians. The key idea is that under state institutions, a person can make claims of acquired right without presupposing that she is by nature exceptional in her capacity to bind others.


Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 352-366
Author(s):  
Thomas Berry ◽  
Matt Visser

In this paper, Lorentz boosts and Wigner rotations are considered from a (complexified) quaternionic point of view. It is demonstrated that, for a suitably defined self-adjoint complex quaternionic 4-velocity, pure Lorentz boosts can be phrased in terms of the quaternion square root of the relative 4-velocity connecting the two inertial frames. Straightforward computations then lead to quite explicit and relatively simple algebraic formulae for the composition of 4-velocities and the Wigner angle. The Wigner rotation is subsequently related to the generic non-associativity of the composition of three 4-velocities, and a necessary and sufficient condition is developed for the associativity to hold. Finally, the authors relate the composition of 4-velocities to a specific implementation of the Baker–Campbell–Hausdorff theorem. As compared to ordinary 4×4 Lorentz transformations, the use of self-adjoint complexified quaternions leads, from a computational view, to storage savings and more rapid computations, and from a pedagogical view to to relatively simple and explicit formulae.


Sign in / Sign up

Export Citation Format

Share Document