scholarly journals Signed Excedance Enumeration in the Hyperoctahedral group

10.37236/3544 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Sivaramakrishnan Sivasubramanian

Several signed excedance-like statistics have nice formulae or generating functions when summed over the symmetric group and over its subset of derangements.  We give counterparts of some of these results when we sum over the hyperoctahedral group and its subset of derangements.  Our results motivate us to define and derive attractive bivariate formulae which generalise some of these results for the symmetric group.

2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Jason Fulman ◽  
Gene B. Kim ◽  
Sangchul Lee ◽  
T. Kyle Petersen

We study the joint distribution of descents and sign for elements of the symmetric group and the hyperoctahedral group (Coxeter groups of types $A$ and $B$). For both groups, this has an application to riffle shuffling: for large decks of cards the sign is close to random after a single shuffle. In both groups, we derive generating functions for the Eulerian distribution refined according to sign, and use them to give two proofs of central limit theorems for positive and negative Eulerian numbers.


1976 ◽  
Vol 79 (3) ◽  
pp. 433-441
Author(s):  
A. G. Williams

The ‘characteristics’ of the wreath product GWrSn, where G is a finite group, are certain polynomials (to be defined in section 2) which are generating functions for the simple characters of GWrSn. Schur (8) first used characteristics of the symmetric group. Specht (9) defined characteristics for GWrSn and found a relation between the characteristics of GWrSn and those of Sn which determined the simple characters of GWrSn. The object of this paper is to describe the p-block structure of GWrSn in the case where p is not a factor of the order of G. We use the relationship between the characteristics of GWrSn and those of Sn, which we deduce from a knowledge of the simple characters of GWrSn (these can be determined, independently of Specht's work, by using Clifford theory).


2009 ◽  
Vol 19 (03) ◽  
pp. 305-313 ◽  
Author(s):  
DAVID EL-CHAI BEN-EZRA

By using simple ideas from subgroup growth of pro-finite groups we deduce some combinatorial identities on generating functions counting various elements in symmetric groups.


2013 ◽  
Vol 2013 ◽  
pp. 1-17
Author(s):  
Sergey Kitaev ◽  
Jeffrey Remmel ◽  
Manda Riehl

We continue the study of the generalized pattern avoidance condition for Ck≀Sn, the wreath product of the cyclic group Ck with the symmetric group Sn, initiated in the work by Kitaev et al., In press. Among our results, there are a number of (multivariable) generating functions both for consecutive and nonconsecutive patterns, as well as a bijective proof for a new sequence counted by the Catalan numbers.


10.37236/299 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Jeffrey Remmel ◽  
Manda Riehl

A large number of generating functions for permutation statistics can be obtained by applying homomorphisms to simple symmetric function identities. In particular, a large number of generating functions involving the number of descents of a permutation $\sigma$, $des(\sigma)$, arise in this way. For any given finite set $S$ of positive integers, we develop a method to produce similar generating functions for the set of permutations of the symmetric group $S_n$ whose descent set contains $S$. Our method will be to apply certain homomorphisms to symmetric function identities involving ribbon Schur functions.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Ron M. Adin ◽  
Alex Postnikov ◽  
Yuval Roichman

International audience A combinatorial construction of Gelfand models for the symmetric group, for its Iwahori-Hecke algebra and for the hyperoctahedral group is presented.


10.37236/1836 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Dan Bernstein

MacMahon's classic theorem states that the length and major index statistics are equidistributed on the symmetric group $S_n$. By defining natural analogues or generalizations of those statistics, similar equidistribution results have been obtained for the alternating group $A_n$ by Regev and Roichman, for the hyperoctahedral group $B_n$ by Adin, Brenti and Roichman, and for the group of even-signed permutations $D_n$ by Biagioli. We prove analogues of MacMahon's equidistribution theorem for the group of signed even permutations and for its subgroup of even-signed even permutations.


10.37236/1879 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
Dominique Foata ◽  
Guo-Niu Han

As for the symmetric group of ordinary permutations there is also a statistical study of the group of signed permutations, that consists of calculating multivariable generating functions for this group by statistics involving record values and the length function. Two approaches are here systematically explored, using the flag-major index on the one hand, and the flag-inversion number on the other hand. The MacMahon Verfahren appears as a powerful tool throughout.


2008 ◽  
Vol 60 (2) ◽  
pp. 297-312
Author(s):  
G. Bini ◽  
I. P. Goulden ◽  
D. M. Jackson

AbstractThe classical Hurwitz enumeration problem has a presentation in terms of transitive factorizations in the symmetric group. This presentation suggests a generalization from type A to other finite reflection groups and, in particular, to type B. We study this generalization both from a combinatorial and a geometric point of view, with the prospect of providing a means of understanding more of the structure of the moduli spaces of maps with an S2-symmetry. The type A case has been well studied and connects Hurwitz numbers to the moduli space of curves. We conjecture an analogous setting for the type B case that is studied here.


Sign in / Sign up

Export Citation Format

Share Document