scholarly journals Generating Functions for Permutations which Contain a Given Descent Set

10.37236/299 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Jeffrey Remmel ◽  
Manda Riehl

A large number of generating functions for permutation statistics can be obtained by applying homomorphisms to simple symmetric function identities. In particular, a large number of generating functions involving the number of descents of a permutation $\sigma$, $des(\sigma)$, arise in this way. For any given finite set $S$ of positive integers, we develop a method to produce similar generating functions for the set of permutations of the symmetric group $S_n$ whose descent set contains $S$. Our method will be to apply certain homomorphisms to symmetric function identities involving ribbon Schur functions.

10.37236/1335 ◽  
1996 ◽  
Vol 4 (2) ◽  
Author(s):  
Richard P. Stanley

A parking function is a sequence $(a_1,\dots,a_n)$ of positive integers such that, if $b_1\leq b_2\leq \cdots\leq b_n$ is the increasing rearrangement of the sequence $(a_1,\dots, a_n),$ then $b_i\leq i$. A noncrossing partition of the set $[n]=\{1,2,\dots,n\}$ is a partition $\pi$ of the set $[n]$ with the property that if $a < b < c < d$ and some block $B$ of $\pi$ contains both $a$ and $c$, while some block $B'$ of $\pi$ contains both $b$ and $d$, then $B=B'$. We establish some connections between parking functions and noncrossing partitions. A generating function for the flag $f$-vector of the lattice NC$_{n+1}$ of noncrossing partitions of $[{\scriptstyle n+1}]$ is shown to coincide (up to the involution $\omega$ on symmetric function) with Haiman's parking function symmetric function. We construct an edge labeling of NC$_{n+1}$ whose chain labels are the set of all parking functions of length $n$. This leads to a local action of the symmetric group ${S}_n$ on NC$_{n+1}$.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Sergey Kitaev ◽  
Andrew Niedermaier ◽  
Jeffrey Remmel ◽  
Manda Riehl

We derive several multivariable generating functions for a generalized pattern-matching condition on the wreath product of the cyclic group and the symmetric group . In particular, we derive the generating functions for the number of matches that occur in elements of for any pattern of length 2 by applying appropriate homomorphisms from the ring of symmetric functions over an infinite number of variables to simple symmetric function identities. This allows us to derive several natural analogues of the distribution of rises relative to the product order on elements of . Our research leads to connections to many known objects/structures yet to be explained combinatorially.


2017 ◽  
Vol 2019 (17) ◽  
pp. 5389-5440 ◽  
Author(s):  
Zachary Hamaker ◽  
Eric Marberg ◽  
Brendan Pawlowski

Abstract The involution Stanley symmetric functions$\hat{F}_y$ are the stable limits of the analogs of Schubert polynomials for the orbits of the orthogonal group in the flag variety. These symmetric functions are also generating functions for involution words and are indexed by the involutions in the symmetric group. By construction, each $\hat{F}_y$ is a sum of Stanley symmetric functions and therefore Schur positive. We prove the stronger fact that these power series are Schur $P$-positive. We give an algorithm to efficiently compute the decomposition of $\hat{F}_y$ into Schur $P$-summands and prove that this decomposition is triangular with respect to the dominance order on partitions. As an application, we derive pattern avoidance conditions which characterize the involution Stanley symmetric functions which are equal to Schur $P$-functions. We deduce as a corollary that the involution Stanley symmetric function of the reverse permutation is a Schur $P$-function indexed by a shifted staircase shape. These results lead to alternate proofs of theorems of Ardila–Serrano and DeWitt on skew Schur functions which are Schur $P$-functions. We also prove new Pfaffian formulas for certain related involution Schubert polynomials.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Miles Eli Jones ◽  
Jeffrey Remmel

International audience In this paper, we develop a new method to compute generating functions of the form $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ where $τ$ is a permutation that starts with $1, \mathcal{NM_n}(τ )$ is the set of permutations in the symmetric group $S_n$ with no $τ$ -matches, and for any permutation $σ ∈S_n$, $LRMin(σ )$ is the number of left-to-right minima of $σ$ and $des(σ )$ is the number of descents of $σ$ . Our method does not compute $NM_τ (t,x,y)$ directly, but assumes that $NM_τ (t,x,y) = \frac{1}{/ (U_τ (t,y))^x}$ where $U_τ (t,y) = \sum_{n ≥0} U_τ ,n(y) \frac{t^n}{ n!}$ so that $U_τ (t,y) = \frac{1}{ NM_τ (t,1,y)}$. We then use the so-called homomorphism method and the combinatorial interpretation of $NM_τ (t,1,y)$ to develop recursions for the coefficient of $U_τ (t,y)$. Dans cet article, nous développons une nouvelle méthode pour calculer les fonctions génératrices de la forme $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ où τ est une permutation, $\mathcal{NM_n}(τ )$ est l'ensemble des permutations dans le groupe symétrique $S_n$ sans $τ$-matches, et pour toute permutation $σ ∈S_n$, $LRMin(σ )$ est le nombre de minima de gauche à droite de $σ$ et $des(σ )$ est le nombre de descentes de $σ$ . Notre méthode ne calcule pas $NM_τ (t,x,y)$ directement, mais suppose que $NM_τ (t,x,y) = \frac{1}{/ (U_τ (t,y))^x}$ où $U_τ (t,y) = \sum_{n ≥0} U_τ ,n(y) \frac{t^n}{ n!}$ de sorte que $U_τ (t,y) = \frac{1}{ NM_τ (t,1,y)}$. Nous utilisons ensuite la méthode dite "de l'homomorphisme'' et l'interprétation combinatoire de $NM_τ (t,1,y)$ pour développer des récursions sur le coefficient de $U_τ (t,y)$.


10.37236/1729 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Graham Denham

Let $a_1,\ldots,a_n$ be distinct, positive integers with $(a_1,\ldots,a_n)=1$, and let k be an arbitrary field. Let $H(a_1,\ldots,a_n;z)$ denote the Hilbert series of the graded algebra k$[t^{a_1},t^{a_2},\ldots,t^{a_n}]$. We show that, when $n=3$, this rational function has a simple expression in terms of $a_1,a_2,a_3$; in particular, the numerator has at most six terms. By way of contrast, it is known that no such expression exists for any $n\geq4$.


10.37236/2320 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Jason Bandlow ◽  
Jennifer Morse

We study the class $\mathcal C$ of symmetric functions whose coefficients in the Schur basis can be described by generating functions for sets of tableaux with fixed shape.  Included in this class are the Hall-Littlewood polynomials, $k$-Schur functions, and Stanley symmetric functions; functions whose Schur coefficients encode combinatorial, representation theoretic and geometric information. While Schur functions represent the cohomology of the Grassmannian variety of $GL_n$, Grothendieck functions $\{G_\lambda\}$ represent the $K$-theory of the same space.  In this paper, we give a combinatorial description of the coefficients when any element of $\mathcal C$ is expanded in the $G$-basis or the basis dual to $\{G_\lambda\}$.


2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Nayandeep Deka Baruah ◽  
Hirakjyoti Das

Let $b_{\ell;3}(n)$ denote the number of $\ell$-regular partitions of $n$ in 3 colours. In this paper, we find some general generating functions and new infinite families of congruences modulo arbitrary powers of $3$ when $\ell\in\{9,27\}$. For instance, for positive integers $n$ and $k$, we have\begin{align*}b_{9;3}\left(3^k\cdot n+3^k-1\right)&\equiv0~\left(\textup{mod}~3^{2k}\right),\\b_{27;3}\left(3^{2k+3}\cdot n+\dfrac{3^{2k+4}-13}{4}\right)&\equiv0~\left(\textup{mod}~3^{2k+5}\right).\end{align*}


1950 ◽  
Vol 2 ◽  
pp. 334-343 ◽  
Author(s):  
G. DE B. Robinson

1. Introduction. The problem of the expression of an invariant matrix of an invariant matrix as a direct sum of invariant matrices is intimately associated with the representation theory of the full linear group on the one hand and with the representation theory of the symmetric group on the other. In a previous paper the author gave an explicit formula for this reduction in terms of characters of the symmetric group. Later J. A. Todd derived the same formula using Schur functions, i.e. characters of representations of the full linear group.


Author(s):  
Martin W. Liebeck

AbstractA permutation group G on a finite set Ω is always exposable if whenever G stabilises a switching class of graphs on Ω, G fixes a graph in the switching class. Here we consider the problem: given a finite group G, which permutation representations of G are always exposable? We present solutions to the problem for (i) 2-generator abelian groups, (ii) all abelian groups in semiregular representations. (iii) generalised quaternion groups and (iv) some representations of the symmetric group Sn.


Sign in / Sign up

Export Citation Format

Share Document