scholarly journals On Euclidean Designs and Potential Energy

10.37236/8 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Tsuyoshi Miezaki ◽  
Makoto Tagami

We study Euclidean designs from the viewpoint of the potential energy. For a finite set in Euclidean space, we formulate a linear programming bound for the potential energy by applying harmonic analysis on a sphere. We also introduce the concept of strong Euclidean designs from the viewpoint of the linear programming bound, and we give a Fisher type inequality for strong Euclidean designs. A finite set on Euclidean space is called a Euclidean $a$-code if any distinct two points in the set are separated at least by $a$. As a corollary of the linear programming bound, we give a method to determine an upper bound on the cardinalities of Euclidean $a$-codes on concentric spheres of given radii. Similarly we also give a method to determine a lower bound on the cardinalities of Euclidean $t$-designs as an analogue of the linear programming bound.

Games ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 62 ◽  
Author(s):  
Anjali Singh ◽  
Anjana Gupta

In this paper, a two-player constant-sum interval-valued 2-tuple linguistic matrix game is construed. The value of a linguistic matrix game is proven as a non-decreasing function of the linguistic values in the payoffs, and, hence, a pair of auxiliary linguistic linear programming (LLP) problems is formulated to obtain the linguistic lower bound and the linguistic upper bound of the interval-valued linguistic value of such class of games. The duality theorem of LLP is also adopted to establish the equality of values of the interval linguistic matrix game for players I and II. A flowchart to summarize the proposed algorithm is also given. The methodology is then illustrated via a hypothetical example to demonstrate the applicability of the proposed theory in the real world. The designed algorithm demonstrates acceptable results in the two-player constant-sum game problems with interval-valued 2-tuple linguistic payoffs.


2014 ◽  
Vol 2 ◽  
Author(s):  
DAVID DE LAAT ◽  
FERNANDO MÁRIO DE OLIVEIRA FILHO ◽  
FRANK VALLENTIN

AbstractWe give theorems that can be used to upper bound the densities of packings of different spherical caps in the unit sphere and of translates of different convex bodies in Euclidean space. These theorems extend the linear programming bounds for packings of spherical caps and of convex bodies through the use of semidefinite programming. We perform explicit computations, obtaining new bounds for packings of spherical caps of two different sizes and for binary sphere packings. We also slightly improve the bounds for the classical problem of packing identical spheres.


10.37236/1533 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
D. De Caen

A construction is given of ${{2}\over {9}} (d+1)^2$ equiangular lines in Euclidean $d$-space, when $d = 3 \cdot 2^{2t-1}-1$ with $t$ any positive integer. This compares with the well known "absolute" upper bound of ${{1}\over {2}} d(d+1)$ lines in any equiangular set; it is the first known constructive lower bound of order $d^2$ .


2016 ◽  
Vol 31 ◽  
pp. 381-407 ◽  
Author(s):  
Yaokun Wu ◽  
Zeying Xu ◽  
Yinfeng Zhu

Given a finite set $K$, a Boolean linear map on $K$ is a map $f$ from the set $2^K$ of all subsets of $K$ into itself with $f(\emptyset )=\emptyset$ such that $f(A\cup B)=f(A)\cup f(B)$ holds for all $A,B\in 2^K$. For fixed subsets $X, Y$ of $K$, to predict if $Y$ is reachable from $X$ in the dynamical system driven by $f$, one can assume the existence of nonnegative integers $h$ with $f^h(X)=Y$, find an upper bound $\alpha$ for the minimum of all such assumed integers $h$, and test if $Y$ really appears in $f^0(X), \ldots, f^\alpha(X)$. In order to get such an upper bound estimate, this paper establishes an expansion property for the Boolean linear map $f$. Namely, the authors find a lower bound on the size of $f^h(X)$ for any nonnegative integer $h$. Besides presenting several direct applications of the derived expansion property, this paper collects some related problems on Boolean linear dynamical systems, including problems on primitive multilinear maps and inhomogeneous topological Markov chains.


1979 ◽  
Vol 16 (03) ◽  
pp. 526-540 ◽  
Author(s):  
J. G. Oxley ◽  
D. J. A. Welsh

We examine how much classical percolation theory on lattices can be extended to arbitrary graphs or even clutters of subsets of a finite set. In the process we get new short proofs of some theorems of J. M. Hammersley. The FKG inequality is used to get an upper bound for the percolation probability and we also derive a lower bound. In each case we characterise when these bounds are attained.


1979 ◽  
Vol 16 (3) ◽  
pp. 526-540 ◽  
Author(s):  
J. G. Oxley ◽  
D. J. A. Welsh

We examine how much classical percolation theory on lattices can be extended to arbitrary graphs or even clutters of subsets of a finite set. In the process we get new short proofs of some theorems of J. M. Hammersley. The FKG inequality is used to get an upper bound for the percolation probability and we also derive a lower bound. In each case we characterise when these bounds are attained.


1995 ◽  
Vol 38 (1) ◽  
pp. 167-170
Author(s):  
Ju Seon Kim ◽  
Sang Og Kim

Let M be a hypersurface in Euclidean space and let the Ricci curvature of M be bounded below by some nonnegative constant. In this paper, we estimate the sectional curvature of M in terms of the lower bound of Ricci curvature and the upper bound of mean curvature.


1998 ◽  
Vol 58 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Shiqing Zhang

Using the equivariant Ljusternik-Schnirelmann theory and the estimate of the upper bound of the critical value and lower bound for the collision solutions, we obtain some new results in the large concerning multiple geometrically distinct periodic solutions of fixed energy for a class of planar N-body type problems.


1990 ◽  
Vol 42 (2) ◽  
pp. 253-266 ◽  
Author(s):  
Jia-Ding Cao ◽  
Heinz H. Gonska

In the present note we study the question: “Under which general conditions do certain Boolean sums of linear operators satisfy Telyakovskiǐ-type estimates?” It is shown, in particular, that any sequence of linear algebraic polynomial operators satisfying a Timan-type inequality can be modified appropriately so as to obtain the corresponding upper bound of the Telyakovskiǐ-type. Several examples are included.


Sign in / Sign up

Export Citation Format

Share Document