scholarly journals Tree-Like Distance Colouring for Planar Graphs of Sufficient Girth

10.37236/8220 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Ross J. Kang ◽  
Willem Van Loon

Given a multigraph $G$ and a positive integer $t$, the distance-$t$ chromatic index of $G$ is the least number of colours needed for a colouring of the edges so that every pair of distinct edges connected by a path of fewer than $t$ edges must receive different colours. Let $\pi'_t(d)$ and $\tau'_t(d)$ be the largest values of this parameter over the class of planar multigraphs and of (simple) trees, respectively, of maximum degree $d$. We have that $\pi'_t(d)$ is at most and at least a non-trivial constant multiple larger than $\tau'_t(d)$. (We conjecture $\limsup_{d\to\infty}\pi'_2(d)/\tau'_2(d) =9/4$ in particular.) We prove for odd $t$ the existence of a quantity $g$ depending only on $t$ such that the distance-$t$ chromatic index of any planar multigraph of maximum degree $d$ and girth at least $g$ is at most $\tau'_t(d)$ if $d$ is sufficiently large. Such a quantity does not exist for even $t$. We also show a related, similar phenomenon for distance vertex-colouring.

Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Pat Morin ◽  
Bartosz Walczak ◽  
David R. Wood

Abstract A (not necessarily proper) vertex colouring of a graph has clustering c if every monochromatic component has at most c vertices. We prove that planar graphs with maximum degree $\Delta$ are 3-colourable with clustering $O(\Delta^2)$ . The previous best bound was $O(\Delta^{37})$ . This result for planar graphs generalises to graphs that can be drawn on a surface of bounded Euler genus with a bounded number of crossings per edge. We then prove that graphs with maximum degree $\Delta$ that exclude a fixed minor are 3-colourable with clustering $O(\Delta^5)$ . The best previous bound for this result was exponential in $\Delta$ .


2008 ◽  
Vol 17 (2) ◽  
pp. 265-270 ◽  
Author(s):  
H. A. KIERSTEAD ◽  
A. V. KOSTOCHKA

A proper vertex colouring of a graph is equitable if the sizes of colour classes differ by at most one. We present a new shorter proof of the celebrated Hajnal–Szemerédi theorem: for every positive integer r, every graph with maximum degree at most r has an equitable colouring with r+1 colours. The proof yields a polynomial time algorithm for such colourings.


10.37236/5390 ◽  
2018 ◽  
Vol 25 (3) ◽  
Author(s):  
Philip DeOrsey ◽  
Michael Ferrara ◽  
Nathan Graber ◽  
Stephen G. Hartke ◽  
Luke L. Nelsen ◽  
...  

The strong chromatic index of a graph $G$, denoted $\chi'_s(G)$, is the least number of colors needed to edge-color $G$ so that edges at distance at most two receive distinct colors. The strong list chromatic index, denoted $\chi'_{s,\ell}(G)$, is the least integer $k$ such that if arbitrary lists of size $k$ are assigned to each edge then $G$ can be edge-colored from those lists where edges at distance at most two receive distinct colors.We use the discharging method, the Combinatorial Nullstellensatz, and computation to show that if $G$ is a subcubic planar graph with ${\rm girth}(G) \geq 41$ then $\chi'_{s,\ell}(G) \leq 5$, answering a question of Borodin and Ivanova [Precise upper bound for the strong edge chromatic number of sparse planar graphs, Discuss. Math. Graph Theory, 33(4), (2014) 759--770]. We further show that if $G$ is a subcubic planar graph and ${\rm girth}(G) \geq 30$, then $\chi_s'(G) \leq 5$, improving a bound from the same paper.Finally, if $G$ is a planar graph with maximum degree at most four and ${\rm girth}(G) \geq 28$, then $\chi'_s(G)N \leq 7$, improving a more general bound of Wang and Zhao from [Odd graphs and its applications to the strong edge coloring, Applied Mathematics and Computation, 325 (2018), 246-251] in this case.


10.37236/6362 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Wilfried Imrich ◽  
Rafał Kalinowski ◽  
Monika Pilśniak ◽  
Mohammad Hadi Shekarriz

We consider infinite graphs. The distinguishing number $D(G)$ of a graph $G$ is the minimum number of colours in a vertex colouring of $G$ that is preserved only by the trivial automorphism. An analogous invariant for edge colourings is called the distinguishing index, denoted by $D'(G)$. We prove that $D'(G)\leq D(G)+1$. For proper colourings, we study relevant invariants called the distinguishing chromatic number $\chi_D(G)$, and the distinguishing chromatic index $\chi'_D(G)$, for vertex and edge colourings, respectively. We show that $\chi_D(G)\leq 2\Delta(G)-1$ for graphs with a finite maximum degree $\Delta(G)$, and we obtain substantially lower bounds for some classes of graphs with infinite motion. We also show that $\chi'_D(G)\leq \chi'(G)+1$, where $\chi'(G)$ is the chromatic index of $G$, and we prove a similar result $\chi''_D(G)\leq \chi''(G)+1$ for proper total colourings. A number of conjectures are formulated.


10.37236/2589 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Danjun Huang ◽  
Weifan Wang

In this paper, we prove that every planar graph of maximum degree six without 7-cycles is class one.


2021 ◽  
Vol 76 (4) ◽  
Author(s):  
Marta Borowiecka-Olszewska ◽  
Ewa Drgas-Burchardt ◽  
Nahid Yelene Javier-Nol ◽  
Rita Zuazua

AbstractWe consider arc colourings of oriented graphs such that for each vertex the colours of all out-arcs incident with the vertex and the colours of all in-arcs incident with the vertex form intervals. We prove that the existence of such a colouring is an NP-complete problem. We give the solution of the problem for r-regular oriented graphs, transitive tournaments, oriented graphs with small maximum degree, oriented graphs with small order and some other classes of oriented graphs. We state the conjecture that for each graph there exists a consecutive colourable orientation and confirm the conjecture for complete graphs, 2-degenerate graphs, planar graphs with girth at least 8, and bipartite graphs with arboricity at most two that include all planar bipartite graphs. Additionally, we prove that the conjecture is true for all perfect consecutively colourable graphs and for all forbidden graphs for the class of perfect consecutively colourable graphs.


10.37236/7353 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Jinko Kanno ◽  
Songling Shan

Let $G$ be a simple graph, and let $\Delta(G)$ and $\chi'(G)$ denote the maximum degree and chromatic index of $G$, respectively. Vizing proved that $\chi'(G)=\Delta(G)$ or $\chi'(G)=\Delta(G)+1$. We say $G$ is $\Delta$-critical if $\chi'(G)=\Delta(G)+1$ and $\chi'(H)<\chi'(G)$ for every proper subgraph $H$ of $G$. In 1968, Vizing conjectured that if $G$ is a $\Delta$-critical graph, then  $G$ has a 2-factor. Let $G$ be an $n$-vertex $\Delta$-critical graph. It was proved that if $\Delta(G)\ge n/2$, then $G$ has a 2-factor; and that if $\Delta(G)\ge 2n/3+13$, then $G$  has a hamiltonian cycle, and thus a 2-factor. It is well known that every 2-tough graph with at least three vertices has a 2-factor. We investigate the existence of a 2-factor in a $\Delta$-critical graph under "moderate" given toughness and  maximum degree conditions. In particular, we show that  if $G$ is an  $n$-vertex $\Delta$-critical graph with toughness at least 3/2 and with maximum degree at least $n/3$, then $G$ has a 2-factor. We also construct a family of graphs that have order $n$, maximum degree $n-1$, toughness at least $3/2$, but have no 2-factor. This implies that the $\Delta$-criticality in the result is needed. In addition, we develop new techniques in proving the existence of 2-factors in graphs.


Sign in / Sign up

Export Citation Format

Share Document