scholarly journals A Subexponential Upper Bound for van der Waerden Numbers $W(3,k)$

10.37236/9704 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Tomasz Schoen

We show an improved upper estimate for van der Waerden number $W(3,k):$ there is an absolute constant $c>0$ such that if $\{1,\dots,N\}=X\cup Y$ is a partition such that $X$ does not contain any arithmetic progression of length $3$ and $Y$ does not contain any arithmetic progression of length $k$ then $$N\le \exp(O(k^{1-c}))\,.$$

2013 ◽  
Vol 09 (04) ◽  
pp. 813-843 ◽  
Author(s):  
GREG MARTIN ◽  
NATHAN NG

Let L(s, χ) be a fixed Dirichlet L-function. Given a vertical arithmetic progression of T points on the line ℜs = ½, we show that at least cT/ log T of them are not zeros of L(s, χ) (for some positive constant c). This result provides some theoretical evidence towards the conjecture that all nonnegative ordinates of zeros of Dirichlet L-functions are linearly independent over the rationals. We also establish an upper bound (depending upon the progression) for the first member of the arithmetic progression that is not a zero of L(s, χ).


10.37236/2957 ◽  
2013 ◽  
Vol 20 (2) ◽  
Author(s):  
Dhruv Mubayi ◽  
Randall Stading

For every even positive integer $k\ge 4$ let $f(n,k)$ denote the minimim number of colors required to color the edges of the $n$-dimensional cube $Q_n$, so that the edges of every copy of the $k$-cycle $C_k$ receive $k$ distinct colors. Faudree, Gyárfás, Lesniak and Schelp proved that $f(n,4)=n$ for $n=4$ or $n>5$. We consider larger $k$ and prove that if $k \equiv 0$ (mod 4), then there are positive constants $c_1, c_2$ depending only on $k$ such that$$c_1n^{k/4} < f(n,k) < c_2 n^{k/4}.$$Our upper bound uses an old construction of Bose and Chowla of generalized Sidon sets. For $k \equiv 2$ (mod 4), the situation seems more complicated. For the smallest case $k=6$ we show that $$3n-2 \le f(n, 6) < n^{1+o(1)}$$ with the lower bound holding for $n \ge 3$. The upper bound is obtained from Behrend's construction of a subset of integers with no three term arithmetic progression.


10.37236/4972 ◽  
2016 ◽  
Vol 23 (4) ◽  
Author(s):  
Bernardo M. Ábrego ◽  
Silvia Fernández-Merchant ◽  
Daniel J. Katz ◽  
Levon Kolesnikov

New bounds on the number of similar or directly similar copies of a pattern within a finite subset of the line or the plane are proved. The number of equilateral triangles whose vertices all lie within an $n$-point subset of the plane is shown to be no more than $\lfloor{(4 n-1)(n-1)/18}\rfloor$. The number of $k$-term arithmetic progressions that lie within an $n$-point subset of the line is shown to be at most $(n-r)(n+r-k+1)/(2 k-2)$, where $r$ is the remainder when $n$ is divided by $k-1$. This upper bound is achieved when the $n$ points themselves form an arithmetic progression, but for some values of $k$ and $n$, it can also be achieved for other configurations of the $n$ points, and a full classification of such optimal configurations is given. These results are achieved using a new general method based on ordering relations.


2018 ◽  
Vol 155 (1) ◽  
pp. 126-163 ◽  
Author(s):  
Andrew Granville ◽  
Adam J. Harper ◽  
K. Soundararajan

Halász’s theorem gives an upper bound for the mean value of a multiplicative function$f$. The bound is sharp for general such$f$, and, in particular, it implies that a multiplicative function with$|f(n)|\leqslant 1$has either mean value$0$, or is ‘close to’$n^{it}$for some fixed$t$. The proofs in the current literature have certain features that are difficult to motivate and which are not particularly flexible. In this article we supply a different, more flexible, proof, which indicates how one might obtain asymptotics, and can be modified to treat short intervals and arithmetic progressions. We use these results to obtain new, arguably simpler, proofs that there are always primes in short intervals (Hoheisel’s theorem), and that there are always primes near to the start of an arithmetic progression (Linnik’s theorem).


KoG ◽  
2019 ◽  
pp. 6-17
Author(s):  
Angéla Vránics ◽  
Jenö Szirmai

In this paper we study the Nil geometry that is one of the eight homogeneous Thurston 3-geometries. We determine the equation of the translation-like bisector surface of any two points. We prove, that the isosceles property of a translation triangle is not equivalent to two angles of the triangle being equal and that the triangle inequalities do not remain valid for translation triangles in general. We develop a method to determine the centre and the radius of the circumscribed translation sphere of a given translation tetrahedron. A further aim of this paper is to study lattice-like coverings with congruent translation balls in Nil space. We introduce the notion of the density of the considered coverings and give upper estimate to it using the radius and the volume of the circumscribed translation sphere of a given translation tetrahedron. The found minimal upper bound density of the translation ball coverings $\Delta \approx 1.42783$. In our work we will use for computations and visualizations the projective model of Nil described by E. Molnár in [6].


2019 ◽  
Author(s):  
V Kumar Murty

International audience A result of Barban-Vehov (and independently Motohashi) gives an estimate for the mean square of a sequence related to Selberg's sieve. This upper bound was refined to an asymptotic formula by S. Graham in 1978. In 1992, I made the observation that Graham's method can be used to obtain an asymptotic formula when the sum is restricted to an arithmetic progression. This formula immediately gives a version of the Brun-Titchmarsh theorem. I am taking the occasion of a volume in honour of my friend S. Srinivasan to revisit and publish this observation in the hope that it might still be of interest.


2007 ◽  
Vol 49 (2) ◽  
pp. 391-403
Author(s):  
FLORIAN LUCA ◽  
IGOR E. SHPARLINSKI

AbstractIn this note, we show that if we write ⌊en!⌋ = s(n)u(n)2, where s(n) is square-free then has at least C log log N distinct prime factors for some absolute constant C > 0 and sufficiently large N. A similar result is obtained for the total number of distinct primes dividing the mth power-free part of s(n) as n ranges from 1 to N, where m ≥ 3 is a positive integer. As an application of such results, we give an upper bound on the number of n ≤ N such that ⌊en!⌋ is a square.


2016 ◽  
Vol 160 (3) ◽  
pp. 477-494 ◽  
Author(s):  
J. CILLERUELO ◽  
M. Z. GARAEV

AbstractIn this paper we obtain new upper bound estimates for the number of solutions of the congruence $$\begin{equation} x\equiv y r\pmod p;\quad x,y\in \mathbb{N},\quad x,y\le H,\quad r\in \mathcal{U}, \end{equation}$$ for certain ranges of H and |${\mathcal U}$|, where ${\mathcal U}$ is a subset of the field of residue classes modulo p having small multiplicative doubling. We then use these estimates to show that the number of solutions of the congruence $$\begin{equation} x^n\equiv \lambda\pmod p; \quad x\in \mathbb{N}, \quad L<x<L+p/n, \end{equation}$$ is at most $p^{\frac{1}{3}-c}$ uniformly over positive integers n, λ and L, for some absolute constant c > 0. This implies, in particular, that if f(x) ∈ $\mathbb{Z}$[x] is a fixed polynomial without multiple roots in $\mathbb{C}$, then the congruence xf(x) ≡ 1 (mod p), x ∈ $\mathbb{N}$, x ⩽ p, has at most $p^{\frac{1}{3}-c}$ solutions as p → ∞, improving some recent results of Kurlberg, Luca and Shparlinski and of Balog, Broughan and Shparlinski. We use our results to show that almost all the residue classes modulo p can be represented in the form xgy (mod p) with positive integers x < p5/8+ϵ and y < p3/8. Here g denotes a primitive root modulo p. We also prove that almost all the residue classes modulo p can be represented in the form xyzgt (mod p) with positive integers x, y, z, t < p1/4+ϵ.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 247
Author(s):  
Kai An Sim ◽  
Kok Bin Wong

By recalling van der Waerden theorem, there exists a least a positive integer w=w(k;r) such that for any n≥w, every r-colouring of [1,n] admits a monochromatic k-term arithmetic progression. Let k≥2 and rk(n) denote the minimum number of colour required so that there exists a rk(n)-colouring of [1,n] that avoids any monochromatic k-term arithmetic progression. In this paper, we give necessary and sufficient conditions for rk(n+1)=rk(n). We also show that rk(n)=2 for all k≤n≤2(k−1)2 and give an upper bound for rp(pm) for any prime p≥3 and integer m≥2.


Sign in / Sign up

Export Citation Format

Share Document