Genotypic Diversity atLr10Locus for Leaf Rust Resistance in Various Hexaploid Wheat Varieties (Lines)

2013 ◽  
Vol 39 (11) ◽  
pp. 1983
Author(s):  
Shu-Xiao HAN ◽  
Quan-Lan LIU ◽  
Jie DONG ◽  
Jian-Sheng CHEN ◽  
Ji-Chun TIAN
2011 ◽  
Vol 59 (3) ◽  
pp. 241-248 ◽  
Author(s):  
G. Vida ◽  
M. Cséplő ◽  
G. Gulyás ◽  
I. Karsai ◽  
T. Kiss ◽  
...  

Among the factors which determine yield reliability an important role is played by disease resistance. One of the breeding aims in the Martonvásár institute is to develop wheat varieties with resistance to major diseases. The winter wheat varieties bred in Martonvásár are examined in artificially inoculated nurseries and greenhouses for resistance to economically important pathogens. The effectiveness of designated genes for resistance to powdery mildew and leaf rust has been monitored over a period of several decades. None of the designated major resistance genes examined in greenhouse tests is able to provide complete resistance to powdery mildew; however, a number of leaf rust resistance genes provide full protection against pathogen attack (Lr9, Lr19, Lr24, Lr25, Lr28 and Lr35). In the course of marker-assisted selection, efficient resistance genes (Lr9, Lr24, Lr25 and Lr29) have been incorporated into Martonvásár wheat varieties. The presence of Lr1, Lr10, Lr26, Lr34 and Lr37 in the Martonvásár gene pool was identified using molecular markers. New sources carrying alien genetic material have been tested for powdery mildew and leaf rust resistance. Valuable Fusarium head blight resistance sources have been identified in populations of old Hungarian wheat varieties. Species causing leaf spots (Pyrenophora tritici-repentis, Septoria tritici and Stagonospora nodorum) have gradually become more frequent over the last two decades. Tests on the resistance of the host plant were begun in Martonvásár four years ago and regular greenhouse tests on seedlings have also been initiated.


1994 ◽  
Vol 74 (4) ◽  
pp. 671-673 ◽  
Author(s):  
P. L. Dyck

Accession 8404 of Triticum turgidum ssp. dicoccoides was shown to have excellent resistance to leaf rust. Genetic analysis of the F3 of 8404 and RL6089, a leaf rust susceptible durum, indicated that 8404 had three genes for leaf rust resistance. Two of these genes were transferred to hexaploid wheat (Thatcher) by a series of backcrosses. One of the genes transferred was the same as Lr33 (RL6057). The second gene, which gives a fleck reaction to avirulent P. recondita races, appears to be fully incorporated into the hexaploid where it segregated to fit a one-gene ratio. Backcross lines with this gene give excellent resistance to leaf rust, although race MBG is virulent to this gene. This may be a previously unidentified leaf rust resistance gene and should increase the genetic diversity available for wheat breeders. Key words:Triticum aestivum, wheat, Triticum turgidum ssp. dicoccoides, leaf rust resistance


2020 ◽  
Vol 5 (6) ◽  
pp. 115-116
Author(s):  
R. A. Eissa ◽  
A. I. Fahmi ◽  
A. M. EL-Zanaty ◽  
W. M. El- Orabey

2020 ◽  
Vol 5 (12) ◽  
pp. 115-116
Author(s):  
R. A. Eissa ◽  
A. I. Fahmi ◽  
A. M. EL- Zanaty ◽  
W. M. El- Orabey

2019 ◽  
Vol 20 (10) ◽  
pp. 2445 ◽  
Author(s):  
Harsimardeep S. Gill ◽  
Chunxin Li ◽  
Jagdeep S. Sidhu ◽  
Wenxuan Liu ◽  
Duane Wilson ◽  
...  

Leaf rust caused by Puccinia triticina Eriks is one of the most problematic diseases of wheat throughout the world. The gene Lr42 confers effective resistance against leaf rust at both seedling and adult plant stages. Previous studies had reported Lr42 to be both recessive and dominant in hexaploid wheat; however, in diploid Aegilops tauschii (TA2450), we found Lr42 to be dominant by studying segregation in two independent F2 and their F2:3 populations. We further fine-mapped Lr42 in hexaploid wheat using a KS93U50/Morocco F5 recombinant inbred line (RIL) population to a 3.7 cM genetic interval flanked by markers TC387992 and WMC432. The 3.7 cM Lr42 region physically corresponds to a 3.16 Mb genomic region on chromosome 1DS based on the Chinese Spring reference genome (RefSeq v.1.1) and a 3.5 Mb genomic interval on chromosome 1 in the Ae. tauschii reference genome. This region includes nine nucleotide-binding domain leucine-rich repeat (NLR) genes in wheat and seven in Ae. tauschii, respectively, and these are the likely candidates for Lr42. Furthermore, we developed two kompetitive allele-specific polymorphism (KASP) markers (SNP113325 and TC387992) flanking Lr42 to facilitate marker-assisted selection for rust resistance in wheat breeding programs.


2007 ◽  
Vol 55 (2) ◽  
pp. 149-156 ◽  
Author(s):  
M. Gál ◽  
G. Vida ◽  
A. Uhrin ◽  
Z. Bedő ◽  
O. Veisz

The breeding and cultivation of resistant wheat varieties is an effective way of controlling leaf rust ( Puccinia triticina Eriks.). The use of molecular markers facilitates the incorporation of the major leaf rust resistance genes ( Lr genes) responsible for resistance into new varieties and the pyramiding of these genes. Marker-assisted selection was used to incorporate the Lr genes currently effective in Hungary ( Lr9 , Lr24 , Lr25 , Lr29 ) into winter wheat varieties. The Lr genes were identified using STS, SCAR and RAPD markers closely linked to them. Investigations were made on how these markers could be utilised in plant breeding, and near-isogenic lines resembling the recurrent variety but each containing a different Lr gene were developed to form the initial stock for the pyramiding of resistance genes. The results indicate that the marker-assisted selection technique elaborated for resistance genes Lr24 , Lr25 and Lr29 can be applied simply and effectively in wheat breeding, while the detection of the Lr9 marker is uncertain.


Sign in / Sign up

Export Citation Format

Share Document