major resistance genes
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 9)

H-INDEX

19
(FIVE YEARS 1)

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 100
Author(s):  
Camilla Langlands-Perry ◽  
Murielle Cuenin ◽  
Christophe Bergez ◽  
Safa Ben Krima ◽  
Sandrine Gélisse ◽  
...  

Quantitative resistance is considered more durable than qualitative resistance as it does not involve major resistance genes that can be easily overcome by pathogen populations, but rather a combination of genes with a lower individual effect. This durability means that quantitative resistance could be an interesting tool for breeding crops that would not systematically require phytosanitary products. Quantitative resistance has yet to reveal all of its intricacies. Here, we delve into the case of the wheat/Septoria tritici blotch (STB) pathosystem. Using a population resulting from a cross between French cultivar Renan, generally resistant to STB, and Chinese Spring, a cultivar susceptible to the disease, we built an ultra-dense genetic map that carries 148,820 single nucleotide polymorphism (SNP) markers. Phenotyping the interaction was done with two different Zymoseptoria tritici strains with contrasted pathogenicities on Renan. A linkage analysis led to the detection of three quantitative trait loci (QTL) related to resistance in Renan. These QTL, on chromosomes 7B, 1D, and 5D, present with an interesting diversity as that on 7B was detected with both fungal strains, while those on 1D and 5D were strain-specific. The resistance on 7B was located in the region of Stb8 and the resistance on 1D colocalized with Stb19. However, the resistance on 5D was new, so further designated Stb20q. Several wall-associated kinases (WAK), nucleotide-binding and leucine-rich repeats (NB-LRR) type, and kinase domain carrying genes were present in the QTL regions, and some of them were expressed during the infection. These results advocate for a role of Stb genes in quantitative resistance and for resistance in the wheat/STB pathosystem being as a whole quantitative and polygenic.


2021 ◽  
Author(s):  
Jasper P. Vermeulen ◽  
Katharina Hanika ◽  
Bart P.H.J. Thomma ◽  
Yuling Bai ◽  
Henk J Schouten

Abstract Verticillium dahliae is a soil-borne fungal pathogen that causes vascular wilt disease in numerous plant species. The only described qualitative resistances against V. dahliae are the Ve1 gene and the V2 locus in tomato. These resistances have been overcome by virulent strains. We tried to identify additional resistances. Out of the methods we tested, comparing the canopy area of V. dahliae-inoculated plants with mock-inoculated plants yielded the best discriminative power in resistance tests. Out of six wild tomato accessions that were previously reported to possess some resistance, Solanum pimpinellifolium G1.1596 and S. cheesmanii G1.1615 displayed the lowest stunting and the least colonization by V. dahliae. Recombinant inbred line (RIL) populations were developed of both populations. No QTLs were identified in the G1.1596 RIL population. In the G1.1615 population, four small-effect QTLs were associated with reduced stunting. Many studies in other hosts also failed to discover major resistance genes against V. dahliae. We hypothesize that the scarcity of major resistance genes against V. dahliae is caused by its endophytic behaviour in nature. The limited damage in nature would not lead to evolutionary pressure to evolve major resistances. However, in agriculture V. dahliae can behave more pathogenic, leading to serious damage.


2021 ◽  
pp. 643-680
Author(s):  
Vincent M. Were ◽  
◽  
Nicholas J. Talbot ◽  

There are important biological process involved in rice blast disease that are now well-studied during the early events in plant infection which include: the cell biology of appressorium formation, the biology of invasive growth and effector secretion, the two distinct mechanisms of effector secretion, the nature of the plant-pathogen interface, PAMP-triggered immunity modulation by secreted effectors and effector-triggered immunity and blast resistance. The devastating losses caused by the blast fungus have been documented in most grasses, but this chapter discusses the use of major resistance genes to rice blast and wheat blast disease as an emerging threat to global food security. This chapter also highlights an emerging approach to breed for durable resistance to plant pathogens using gene editing technologies with an example: CRISPR-Cas9 mutagenesis of dominant S-genes for disease control.


Plant Disease ◽  
2021 ◽  
Author(s):  
Austin Glenn McCoy ◽  
Zachary Albert Noel ◽  
Janette L Jacobs ◽  
Kayla M Clouse ◽  
Martin I Chilvers

Identifying the pathotype structure of a Phytophthora sojae population is crucial for the effective management of Phytophthora stem and root rot of soybean (PRR). P. sojae has been successfully managed with major resistance genes, partial resistance, and fungicide seed treatments. However, prolonged use of resistance genes or fungicides can cause pathogen populations to adapt over time, rendering resistance genes or fungicides ineffective. A statewide survey was conducted to characterize the current pathotype structure and fungicide sensitivity of P. sojae within Michigan. Soil samples were collected from 69 fields with a history of PRR and fields having consistent plant stand establishment issues. Eighty-three isolates of P. sojae were obtained, and hypocotyl inoculations were performed on 14 differential soybean cultivars, all of which carry a single Rps gene or no resistance gene. The survey identified a loss of effectiveness of Rps genes 1b, 1k, 3b and 6, compared to a previous survey conducted in Michigan from 1993-1997. Three effective resistance genes were identified for P. sojae management in Michigan; Rps 3a, 3c, and 4. Additionally, the effective concentration of common seed treatment fungicides to inhibit mycelial growth by 50% (EC50) was determined. No P. sojae isolates were insensitive to the tested chemistries with mean EC50 values of 2.60x10-2 µg/ml for ethaboxam, 3.03x10-2 µg/ml for mefenoxam, 2.88x10-4 µg/ml for oxathiapiprolin, and 5.08x10-2 µg/ml for pyraclostrobin. Results suggest that while there has been a significant shift in Rps gene effectiveness, seed treatments are still effective for early season management of this disease.


Author(s):  
Volker Mohler

AbstractBesides the mode of inheritance, the knowledge of the chromosome location and allelic relationships are the essentials towards a successful deployment and stacking of divergent disease resistance genes for a given pathogen in breeding programs. Powdery mildew of oats, to which 11 major resistance genes in the host Avena sativa L. have been characterized so far, is a prevalent fungal disease of the crop in Northwestern Europe. In the present study, the resistance gene Pm3 was mapped by linkage analysis relative to molecular markers from oat consensus linkage group Mrg18 which was recently determined to represent oat chromosome 1A. Pm3 was located at 67.7–72.6 cM on Mrg18 of the oat consensus map, a position at which also stem and crown rust resistance genes Pg13 and Pc91 and a large cluster of resistance gene analogs have been previously mapped. The closely linked marker GMI_ES03_c2277_336 was found to be useful for the prediction of Pm3 in gene postulation studies. Although the major effect of the widespread gene got lost over time, the known genome location with associated markers will assist revealing in future genetic studies whether there is a possible residual effect of the gene contributing to adult plant resistance.


Author(s):  
Lorena Parra ◽  
Kazuko Nortman ◽  
Anil Sah ◽  
Maria Jose Truco ◽  
Oswaldo Ochoa ◽  
...  

Abstract Key message Eleven new major resistance genes for lettuce downy mildew were introgressed from wild Lactuca species and mapped to small regions in the lettuce genome. Abstract Downy mildew, caused by the oomycete pathogen Bremia lactucae Regel, is the most important disease of lettuce (Lactuca sativa L.). The most effective method to control this disease is by using resistant cultivars expressing dominant resistance genes (Dm genes). In order to counter changes in pathogen virulence, multiple resistance genes have been introgressed from wild species by repeated backcrosses to cultivated lettuce, resulting in numerous near-isogenic lines (NILs) only differing for small chromosome regions that are associated with resistance. Low-pass, whole genome sequencing of 11 NILs was used to identify the chromosome segments introgressed from the wild donor species. This located the candidate chromosomal positions for resistance genes as well as additional segments. F2 segregating populations derived from these NILs were used to genetically map the resistance genes to one or two loci in the lettuce reference genome. Precise knowledge of the location of new Dm genes provides the foundation for marker-assisted selection to breed cultivars with multiple genes for resistance to downy mildew.


Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Dabing Yang ◽  
Jianhao Tang ◽  
Di Yang ◽  
Ying Chen ◽  
Jauhar Ali ◽  
...  

Abstract Background Rice blast caused by Magnaporthe oryzae is one of the most widespread biotic constraints that threaten rice production. Using major resistance genes for rice blast resistance improvement is considered to be an efficient and technically feasible approach to achieve optimal grain yield. Results We report here the introgression of the broad-spectrum blast resistance gene Pi2 into the genetic background of an elite PTGMS line, Feng39S, for enhancing it and its derived hybrid blast resistance through marker-assisted backcrossing (MABC) coupled with genomics-based background selection. Two PTGMS lines, designated as DB16206–34 and DB16206–38, stacking homozygous Pi2 were selected, and their genetic background had recurrent parent genome recovery of 99.67% detected by the SNP array RICE6K. DB16206–34 and DB16206–38 had high resistance frequency, with an average of 94.7%, when infected with 57 blast isolates over 2 years, and the resistance frequency of their derived hybrids ranged from 68.2% to 95.5% under inoculation of 22 blast isolates. The evaluation of results under natural blast epidemic field conditions showed that the selected PTGMS lines and their derived hybrids were resistant against leaf and neck blast. The characterizations of the critical temperature point of fertility-sterility alternation of the selected PTGMS lines, yield, main agronomic traits, and rice quality of the selected PTGMS lines and their hybrids were identical to those of the recurrent parent and its hybrids. DB16206–34/9311 or DB16206–38/9311 can be used as a blast-resistant version to replace the popular hybrid Fengliangyou 4. Likewise, DB16206–34/FXH No.1 or DB16206–38/FXH No.1 can also be used as a blast-resistant version to replace another popular hybrid Fengliangyou Xiang 1. Conclusions Our evaluation is the first successful case to apply MABC with genomics-based background selection to improve the blast resistance of PTGMS lines for two-line hybrid rice breeding.


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1559-1564 ◽  
Author(s):  
Edyta Paczos-Grzęda ◽  
Sylwia Sowa

The crown rust fungus Puccinia coronata f. sp. avenae P. Syd. & Syd. (Pca) attacks cultivated oat and its wild relatives, causing significant losses to the crop worldwide. Although understanding the origin and dynamics of the pathogen’s diversity is critical to developing methods for its control, there are little relevant data on Pca virulence diversity in Europe, the global center of oat production. The goal of this study was to analyze the diversity of Pca populations in Poland in 2013 to 2015 based on their ability to overcome currently available host resistance Pc genes. Pca isolate virulence was evaluated on a panel of lines containing 26 major resistance genes of oat. The isolates were able to overcome from 1 to 16 resistance genes each, with most isolates being virulent on five to seven lines. In all years, a very high level of crown rust pathotype diversity was observed, with Simpson and Evenness indices of 0.99. In total, 156 different pathotypes were detected, with no prevalent pathotype in any of the 3 years analyzed. The results showed that the virulence level of P. coronata isolates was relatively low for each year studied (21% on average), most likely owing to the low take up of Pc genes in Polish oat cultivars, meaning that many sources of resistance are still effective against Pca races occurring in Poland. The long-range dispersal of Puccinia spores supported by the availability of wild, weedy, and cultivated Avena species makes it likely that the virulence profile seen in Poland is representative of much of central Europe and beyond.


OENO One ◽  
2018 ◽  
Vol 52 (3) ◽  
pp. 203-209 ◽  
Author(s):  
Didier Merdinoglu ◽  
Christophe Schneider ◽  
Emilce Prado ◽  
Sabine Wiedemann-Merdinoglu ◽  
Pere Mestre

The current strategy to control grapevine downy and powdery mildew relies on chemical treatments. An alternative solution to the use of chemicals is the development of varieties resistant to pathogens. Several genetic factors derived from Vitis species closely related to cultivated grapevine and conferring protection against downy mildew or powdery mildew have already been identified. Nevertheless, many major resistance genes have been overcome by virulent strains of pathogens in various plant-pathogen interactions, and such resistance breakdowns have already been described in grapevine. Resistance genes are a limited resource, and their introduction in a new variety is a long-term and costly process. This is why the assessment and improvement of resistance durability is crucial, particularly in the case of a perennial species. The Inra-ResDur breeding program aims at creating varieties with durable resistance to downy and powdery mildew. The pyramiding strategy employed to limit the risk of resistance breakdown is described. Other innovative ways are proposed to enhance resistance durability.


Sign in / Sign up

Export Citation Format

Share Document