Effect of siRNA targeting TGF-β inducible early gene on expression of advanced glycation end products-mediated Smad2 in renal tubular epithelial cells

2010 ◽  
Vol 30 (4) ◽  
pp. 354-358
Author(s):  
Li-hong YE ◽  
Xiao-chun SHU ◽  
Hong-yun LU ◽  
Fang HU ◽  
Liao SUN ◽  
...  
2015 ◽  
Vol 41 (3) ◽  
pp. 257-266 ◽  
Author(s):  
Meichu Cheng ◽  
Hong Liu ◽  
Dongshan Zhang ◽  
Yinghong Liu ◽  
Chang Wang ◽  
...  

Background/Aims: Advanced glycation end products (AGEs) induce epithelial mesenchymal transition (EMT) in renal proximal tubular epithelial cells (PTECs) by promoting the two EMT regulators, transforming growth factor beta (TGF-β) and connective tissue growth factor (CTGF). However, the exact signaling mechanism remains largely unclear. Methods: We investigated the promotion to high mobility group box 1 (HMGB1) in renal tubular epithelial HK-2 cells by AGE-BSA with quantitative PCR and western blot assay, and then determined the regulatory role of HMGB1 in the AGE-BSA-induced CTGF and TGF-β. In addition, the dependence of the receptor of advanced glycation end products (RAGE) was also examined in the CTGF and TGF-β promotion by AGEs and HMGB1 in HK-2 cells using the RNAi method. Results: It was demonstrated that AGEs induced translocation and release of HMGB1 from tubular epithelial HK-2 cells, and the released HMGB1 enhanced the promotion to CTGF and TGF-β by AGEs in HK-2 cells. On the other side, the HMGB1 knockdown by siRNA attenuated the AGE-BSA-induced expression of TGF-β. Moreover, the CTGF and TGF-β promotion in HK-2 cells by AGEs and HMGB1 was RAGE-dependent. Conclusion: Our results indicated that AGEs induced HMGB-1 and promoted the CTGF and TGF-β in renal epithelial HK-2 cells RAGE-dependently. And there was a synergism between AGEs and HMGB1 in the RAGE signaling activation. The in vitro data suggested that the AGE-RAGE and HMGB-1-RAGE signaling might play an important role in the promotion of CTGF and TGF-β in the renal fibrosis process of diabetic nephropathy.


Biology Open ◽  
2021 ◽  
Author(s):  
Taro Miyagawa ◽  
Yasunori Iwata ◽  
Megumi Oshima ◽  
Hisayuki Ogura ◽  
Koichi Sato ◽  
...  

The full-length receptor for advanced glycation end products (RAGE) is a multiligand pattern recognition receptor. High-mobility group box 1 (HMGB1) is a RAGE ligand of damage-associated molecular patterns that elicits inflammatory reactions. The shedded isoform of RAGE and endogenous secretory RAGE (esRAGE), a splice variant, are soluble isoforms (sRAGE) that act as organ-protective decoys. However, the pathophysiologic roles of RAGE/sRAGE in acute kidney injury (AKI) remain unclear. We found that AKI was more severe, with enhanced renal tubular damage, macrophage infiltration, and fibrosis, in mice lacking both RAGE and sRAGE than in wild-type control mice. Using murine tubular epithelial cells (TECs), we demonstrated that hypoxia upregulated messenger RNA (mRNA) expression of HMGB1 and tumor necrosis factor α (TNF-α), whereas RAGE and esRAGE expressions were paradoxically decreased. Moreover, the addition of recombinant sRAGE canceled hypoxia-induced inflammation and promoted cell viability in cultured TECs. sRAGE administration prevented renal tubular damage in models of ischemia/reperfusion-induced AKI and of anti-glomerular basement membrane (anti-GBM) glomerulonephritis. These results suggest that sRAGE is a novel therapeutic option for AKI.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 359-359
Author(s):  
David Turner ◽  
Bradley Krisanits ◽  
Callan Frye ◽  
Lourdes Nogueira ◽  
Ried Schuster ◽  
...  

Abstract Objectives The literature regarding the role of advanced glycation end products (AGEs) on tumor biology has shown only moderate promise reflected by increases in cell growth, migration and invasion in vitro which is not supported by increased tumor growth in vivo14-16– A caveat to these studies is that they are centered upon a single AGE peptide and a subsequent assessment of their molecular effects on tumor epithelial cells. The objective is to show that by feeding mice a high AGE diet we can recapitulate a microenvironment comprising of a wide spectrum of AGEs which can influence neoplastic growth. Methods We recapitulated a dietary-AGE induced microenvironment in syngeneic xenograft and spontaneous breast and prostate mouse cancer models and the effects on tumor growth assessed. The mechanistic consequences of dietary-AGEs on the tumor microenvironment were further defined using mouse and human primary and immortalized two-compartment co-culture ex vivo culture models. Results Dietary-AGE consumption in breast and prostate tumor models significantly accelerated tumor growth by functioning as ligand to the transmembrane receptor for AGE (RAGE). Our studies demonstrate that AGEs promote neoplastic growth by functioning as ligand to RAGE expressed in the tumor stroma not the tumor epithelial cells. Dietary-AGE activation of RAGE in both breast and prostate tumors caused a regulatory program of ‘activated fibroblasts’ defined by increased expression of cancer associated fibroblast markers, NFkB and MYC upregulation, and pro-tumorigenic paracrine secretion. Complementary to this, our published studies show that high intake of dietary AGE after BCa diagnosis increases risk of mortality in postmenopausal women. Conclusions These data demonstrate, for the first time, the oncogenic potential of dietary-AGEs in promoting neoplastic growth. This lays the foundation for strategic changes aimed at reducing cancer incidence and mortality as pharmacological, educational and/or interventional strategies aimed at reducing the dietary-AGE accumulation pool may one day be viewed as universal cancer preventative and/or therapeutic initiatives especially when combined with existing therapies. Funding Sources David P. Turner was supported by grants from the NIH/NCI, R21 CA194469 and U54 CA21096..


2011 ◽  
Vol 300 (4) ◽  
pp. L516-L525 ◽  
Author(s):  
Naoko Yamakawa ◽  
Tokujiro Uchida ◽  
Michael A. Matthay ◽  
Koshi Makita

Although the receptor for advanced glycation end products (RAGE) has been used as a biological marker of alveolar epithelial cell injury in clinical studies, the mechanism for release of soluble RAGE from lung epithelial cells has not been well studied. Therefore, these studies were designed to determine the mechanism for release of soluble RAGE after lipopolysaccharide (LPS) challenge. For these purposes, alveolar epithelial cells from rat lungs were cultured on Transwell inserts, and LPS was added to the apical side (500 μg/ml) for 16 h on day 7. On day 7, RAGE was expressed predominantly in surfactant protein D-negative cells, and LPS challenge induced release of RAGE into the medium. This response was partially blocked by matrix metalloproteinase (MMP) inhibitors. Transcripts of MMP-3 and MMP-13 were upregulated by LPS, whereas RAGE transcripts did not change. Proteolysis by MMP-3 and MMP-13 resulted in soluble RAGE expression in the bronchoalveolar lavage fluid in the in situ rat lung, and this reaction was inhibited by MMP inhibitors. In human studies, both MMP-3 and -13 antigen levels were significantly correlated with the level of RAGE in pulmonary edema fluid samples. These results support the conclusion that release of RAGE is primarily mediated by proteolytic damage in alveolar epithelial cells in the lung, caused by proteases in acute inflammatory conditions in the distal air spaces.


Sign in / Sign up

Export Citation Format

Share Document