In vivo anti-inflammatory activity of Tabernaemontana divaricata leaf extract on male albino mice

2014 ◽  
Vol 11 (5) ◽  
pp. 472-476
Author(s):  
Jain Sachin ◽  
Sharma Praveen ◽  
Ghule Santosh ◽  
Jain Ankit ◽  
Jain Nitesh
2013 ◽  
Vol 11 (5) ◽  
pp. 472-476 ◽  
Author(s):  
Sachin Jain ◽  
Praveen Sharma ◽  
Santosh Ghule ◽  
Ankit Jain ◽  
Nitesh Jain

Author(s):  
Jaeyong Kim ◽  
Gyuok Lee ◽  
Huwon Kang ◽  
Ji-Seok Yoo ◽  
Yongnam Lee ◽  
...  

Background: Inflammation is emerging as a key contributor to many vascular diseases and furthermore plays a major role in autoimmune diseases, arthritis, allergic reactions, and cancer. Lipopolysaccharide (LPS), which is a component constituting the outer membrane of Gram-negative bacteria, is commonly used for an inflammatory stimuli to mimic inflammatory diseases. Nuclear factor-kappa B (NF-κB) is a transcription factor and regulates gene expression particularly related to the inflammatory process. Stauntonia hexaphylla (Lardizabalaceae) is widely used as a traditional herbal medicine for rheumatism and osteoporosis and as an analgesic, sedative, and diuretic in Korea, Japan, and China. Objective: The purpose of this study was to investigate the anti-inflammatory activity of YRA-1909, the leaf aqueous extract of Stauntonia hexaphylla using LPS-activated rat peritoneal macrophages and rodent inflammation models. Results: YRA-1909 inhibited the LPS-induced nitric oxide (NO) and proinflammatory cytokine production in rat peritoneal macrophages without causing cytotoxicity and reduced inducible NO synthase and prostaglandin E2 levels without affecting the cyclooxygenase-2 expression. YRA-1909 also prevented the LPS-stimulated Akt and NF-κB phosphorylation and reduced the carrageenan-induced hind paw edema, xylene-induced ear edema, acetic acid-induced vascular permeation, and cotton pellet-induced granuloma formation in a dose-dependent manner in mice and rats. Conclusions: S. hexaphylla leaf extract YRA-1909 had anti-inflammatory activity in vitro and in vivo that involves modulation of Akt/NF-κB signaling. Thus, YRA-1909 is safe and effective for the treatment of inflammation.


2020 ◽  
Vol 8 (A) ◽  
pp. 487-490
Author(s):  
Sumaiyah Sumaiyah ◽  
Masfria Masfria ◽  
Aminah Dalimunthe

BACKGROUND: Cancer growth is influenced by many factors and in general it is an interaction between gene factors and environmental factors, especially the microenvironment that exists around cancer. The inflammatory response plays a decisive role in various stages of cancer growth. AIM: The aim of this study was to determine the anti-inflammatory activity of ethanol extract of Rhaphidophora pinnata leaves. METHODS: R. pinnata leaf extract was obtained by percolation method using 96% ethanol as the solvent at room temperature. Anti-inflammatory activity was determined based on the paw edema method. Thirty male albino mice were treated orally with sodium carboxyl cellulose suspension (as negative control group), R. pinnata leaf extract (35, 70, 140, and 280 mg/kgBW), and diclofenac (as positive control group), 60 min before 0.2 mL 1% carrageenan injection. The paw thickness was measured using plethysmometer before injecting the carrageenan and after 1, 2, 3, 4, 5, and 6 h. RESULTS: The subplantar injection of carrageenan caused a time-dependent paw edema in the mice. Oral administration of R. pinnata leaf extract inhibited paw swelling at 1, 2, 3 4, 5, and 6 h after carrageenan injection. R. pinnata leaf extracts doses of 35, 70, 140, and 280 mg/kgBW gave a percentage inhibition of 56.56%, 56.18%, 62.77%, and 49.30%, respectively. The effective dose of R. pinnata leaf extract as an anti-inflammatory was 140 mg/kgBW. CONCLUSION: Ethanol extract of R. pinnata leaf has anti-inflammatory activity in male albino mice.


Author(s):  
Mohammad Mustakim Billah ◽  
Abir Huzaifa ◽  
M. Abdul Kader Khan ◽  
Nusrat Jahan Vabna ◽  
Kashfia Nawrin ◽  
...  

Background: Crotalaria verrucosa is a traditional plant frequently prescribed by the tribes for its medicinal value against inflammation. The present study was designed to investigate the scientific basis for medicinal value in inflammation by in vivo and in vitro analysis.Methods: Anti-inflammatory activity of the plant’s leaf was evaluated by two in vivo methods - carrageenan induced rat paw edema and xylene induced mice ear edema. Moreover, in vitro analysis was performed through heat induced hemolysis and heat induced protein denaturation methods.Results: The inflammation produced by carrageenan and xylene were effectively suppressed by the aqueous leaf extract of C. verrucosa (CVAQ) at 600 mg/kg body weight which was comparable to the standards. In heat induced hemolysis test the extract was able to inhibit the lysis up to 70% at 500 µg/ml whereas in heat induced protein denaturation test it reduces the percentage till 69% at the same concentration.Conclusions: The findings suggested that CVAQ possess moderate to high anti-inflammatory activity when applied in low to high concentrated doses. However, the study can only conclude from this basic evaluation that the extract needs to be further investigated for identifying the potential compound which contributed to such medicinal value of the plant.


2021 ◽  
Author(s):  
Ravindra Jagannath Waghole ◽  
Ashwini Vivek Misar ◽  
Neha Shashikant Kulkarni ◽  
Feroz Khan ◽  
Dattatraya Gopal Naik ◽  
...  

Abstract The severity and perseverance of the inflammation have been demonstrated in many health conditions. The limitations of existing medications, propose the need for newer alternative anti-inflammatory medications. In our earlier studies, we demonstrated the topical anti-inflammatory potential of crude ethanolic extract of Tetrastigma sulcatum leaves and its fractions. In the present study, we further explored anti-inflammatory activity of T. sulcatum extract, fractions, pure compound and its derivatives using in vitro and in vivo bioassay techniques. We attempted to isolate a pure compound from leaf extract and was identified as Friedelan-3β-ol (CI) and its derivatives Friedelinol acetate (C II) and Friedelinol methyl ether (C III) were synthesized. Treatment with crude extract and its fractions demonstrated a significant reduction in the mRNA expression levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) and nitric oxide (NO) production in LPS-stimulated inflammation in RAW 264.7 cells. Likewise, compounds CI, CII and CIII showed a similar pattern of significant inhibition of proinflammatory cytokines and NO production. In vivo study in Carrageenan induced paw-inflammatory mice model demonstrated reduced paw oedema and proinflammatory cytokines levels in a dose-dependent manner upon treatment of extract, its fractions, pure compound (CI), and their derivatives (CII and CIII.). The docking study showed all the compounds (CI, CII and CIII) share common residues with Dexamethasone. TNF- α exhibited the most interacting residues with the compounds. The present study confirmed the T. sulcatum ’s anti-inflammatory activity, suggesting Friedelan-3β-ol as an active component in a crude extract.


2020 ◽  
Vol 1 (2) ◽  
pp. 46-53
Author(s):  
Lusi Agus Setiani ◽  
Zaldi Rusli

Inflammation is the immune system's main response to infection and irritation. African leaf (Gymnanthemum amygdalinum) is one of the medicinal plants that can be used as anti-inflammatory because of the presence of flavonoid compounds. Flavonoid compounds have an anti-inflammatory effect that can regulate arachidonic acid metabo-lism by inhibiting cyclooxygenase (COX) and lipooksigenase activi-ties. This study aims to obtain scientific information and the potential of African leaf extract as an anti-inflammatory in vitro and in vivo test. In this study, in vitro and in vivo anti-inflammatory activity tests were carried out. The in vitro anti-inflammatory activity was evaluated by the ability of African leaf extracts to prevent protein denaturation and in vivo anti-inflammatory activity by observing the reduction of edema in the soles of rats induced by carrageenan by giving three lev-els of doses of African leaf extract. The results showed that the African leaf extract at a concentration of 8273.91 mg L-1 was able to inhibit 50% denatured protein (IC50), while in the in vivo test African leaf had the potential as an anti-inflammatory with the most effective percent-age of inhibition at a dose of 200 mg kg-1 which is 85.20%. African leaf have the potential of approximately 2 times greater than the positive control of diclofenac sodium which is 45.70%.


Author(s):  
Kamalakararao Konuku ◽  
Krishna Chaithanya Karri ◽  
Velliyur Kanniappan Gopalakrishnan ◽  
Zenebe Hagos ◽  
Haftom Kebede ◽  
...  

Objective: Manilkara zapota is a medicinal plant which is native to Mexico and Central America, and widely distributed in India. Various parts of this plant are traditionally used for treatment of several diseases, including inflammation-associated ailments. The main aim of the present study is to evaluate the anti-inflammatory potential of ethyl acetate and methanolic extracts of M. zapota leaf.Methods: In vitro secretary phospholipase A2 (PLA2) and 5-Lipoxygenase (5-LOX) assays and In vivo studies using carrageenan induced rat paw edema model were performed to assess the anti-inflammatory activity of M. zapota leaf extracts.Results: In vitro studies suggest that M. zapota leaf extracts exhibited significant SPLA2 and 5-LOX inhibitory activities. In in vivo studies M. zapota leaf extracts showed dose dependent inhibition of carrageenan induced paw edema in rats. The anti-inflammatory activity of ethyl acetate leaf extract was superior to methanolic extract.Conclusion: This study concluded that ethyl acetate leaf extract of M. zapotaexhibited significant anti-inflammatory activity and warranted further investigation to isolate and identify the components. 


2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document