A graphical method to solve a dispersion equation of Lamb wave

2013 ◽  
Vol 26 (11) ◽  
pp. 966-971 ◽  
Author(s):  
Xining Xu ◽  
Zujun Yu ◽  
Liqiang Zhu
2012 ◽  
Vol 229-231 ◽  
pp. 1976-1979
Author(s):  
Tie Lin Sun ◽  
Hui Sun

The traditional method to calculate complex transcendental equation is poor, which can't meet requirements of calculating imaginary answer and fast calculation at the same time. This paper proposes "modified dichotomy method" through modifying the classical dichotomy method to solve complex transcendental equation, that can not only calculates imaginary answer but also calculates fast. Algorithm is also verified through comparing with the answer to lamb wave dispersion equation in elastic plate.


1996 ◽  
Vol 8 (1) ◽  
pp. 189-197
Author(s):  
J. Pei ◽  
M. I. Yousuf ◽  
F. L. Degertekin ◽  
B. V. Honein ◽  
B. T. Khuri-Yakub

2000 ◽  
Vol 16 (2) ◽  
pp. 107-114 ◽  
Author(s):  
Louis M. Hsu ◽  
Judy Hayman ◽  
Judith Koch ◽  
Debbie Mandell

Summary: In the United States' normative population for the WAIS-R, differences (Ds) between persons' verbal and performance IQs (VIQs and PIQs) tend to increase with an increase in full scale IQs (FSIQs). This suggests that norm-referenced interpretations of Ds should take FSIQs into account. Two new graphs are presented to facilitate this type of interpretation. One of these graphs estimates the mean of absolute values of D (called typical D) at each FSIQ level of the US normative population. The other graph estimates the absolute value of D that is exceeded only 5% of the time (called abnormal D) at each FSIQ level of this population. A graph for the identification of conventional “statistically significant Ds” (also called “reliable Ds”) is also presented. A reliable D is defined in the context of classical true score theory as an absolute D that is unlikely (p < .05) to be exceeded by a person whose true VIQ and PIQ are equal. As conventionally defined reliable Ds do not depend on the FSIQ. The graphs of typical and abnormal Ds are based on quadratic models of the relation of sizes of Ds to FSIQs. These models are generalizations of models described in Hsu (1996) . The new graphical method of identifying Abnormal Ds is compared to the conventional Payne-Jones method of identifying these Ds. Implications of the three juxtaposed graphs for the interpretation of VIQ-PIQ differences are discussed.


2011 ◽  
Vol 17 (1) ◽  
pp. 43-46 ◽  
Author(s):  
G.V. Lizunov ◽  
◽  
A.Yu. Leontiev ◽  

2013 ◽  
Vol 1 (1) ◽  
pp. 42-25
Author(s):  
Nabil N. Swadi

This paper is concerned with the study of the kinematic and kinetic analysis of a slider crank linkage using D'Alembert's principle. The links of the considered mechanism are assumed to be rigid. The analytical solution to observe the motion (displacement, velocity, and acceleration), reactions at each joint, torque required to drive the mechanism and the shaking force have been computed by a computer program written in MATLAB language over one complete revolution of the crank shaft. The results are compared with a finite element simulation carried out by using ANSYS Workbench software and are found to be in good agreement. A graphical method (relative velocity and acceleration method) has been also applied for two phases of the crank shaft (q2 = 10° and 130°). The results obtained from this method (graphical) are compared with those obtained from analytical and numerical method and are found very acceptable. To make the analysis linear the friction force on the joints and sliding interface are neglected. All results, in this work, are obtained when the crank shaft turns at a uniform angular velocity (w2 = 188.5 rad/s) and time dependent gas pressure force on the slider crown.


Sign in / Sign up

Export Citation Format

Share Document