Control System Design of DELTA Parallel Manipulator Based on Real-time Ethernet

ROBOT ◽  
2013 ◽  
Vol 35 (5) ◽  
pp. 576
Author(s):  
Xulin LANG ◽  
Dong JIN ◽  
Chengrui ZHANG ◽  
Yue ZHANG ◽  
Yunfei WANG ◽  
...  
2015 ◽  
Vol 789-790 ◽  
pp. 693-699
Author(s):  
Alaa Khalifa ◽  
Ahmed Ramadan

This paper concerns with the control system design for a teleoperated endoscopic surgical manipulator system that uses PHANTOM Omni haptic device as the master and a 4-DOF parallel manipulator (2-PUU_2-PUS) as the slave. PID control algorithm was used to achieve the trajectory tracking, but the error in each actuated joint reached 0.6 mm which is not satisfactory in surgical application. The design of a control algorithm for achieving high trajectory tracking is needed. Simulation on the virtual prototype of the 4-DOF parallel manipulator has been achieved by combining MATLAB/Simulink with ADAMS. Fuzzy logic controller is designed and tested using the interface between ADAMS and MATLAB/Simulink. Signal constraint block adjusted the controller parameters for each actuated prismatic joint to eliminate the overshoot in most of position responses. The simulation results illustrate that the fuzzy logic control algorithm can achieve high trajectory tracking. Also, they show that the fuzzy controller has reduced the error by approximately 50 percent.


1999 ◽  
Author(s):  
Veronika Gospodareva ◽  
William Hamel ◽  
Claudell Hatmaker ◽  
Jeffrey Hodgson ◽  
Stephen Jesse ◽  
...  

Abstract The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville (UTK) offers courses addressing the simulation, modeling, and control system design of hybrid electric vehicles (HEV). In the Spring of 1999 such a course was conducted to support the UTK FutureCar Challenge entry for 1999. The vehicle modeled is a Dual-configuration Hybrid Electric Vehicle (DHEV) which uses a planetary power-split device similar to the Toyota Hybrid System used in the Toyota “Prius”. The goals of the course included the development of a real-time simulator that could incorporate actual vehicle control hardware in the simulator loop. This “control-hardware-in-the-loop” (CHIL) configuration was used for simulation, control system design, and troubleshooting. This approach allows the simulation of normal vehicle operating conditions as well as emergency fault handling situations in which it may not be desirable to subject the actual prototype vehicle to a given test condition. Additionally, it is possible to do a great deal of control system testing and development without an operating vehicle.


Sign in / Sign up

Export Citation Format

Share Document