Predicting Potential Drug Targets of G-protein Coupled Receptors Based on SVM

2013 ◽  
Vol 29 (6) ◽  
pp. 461
Author(s):  
Chunli WANG ◽  
Shiqiang ZHANG
2012 ◽  
Vol 33 (3) ◽  
pp. 363-371 ◽  
Author(s):  
Xiao-long Tang ◽  
Ying Wang ◽  
Da-li Li ◽  
Jian Luo ◽  
Ming-yao Liu

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3347
Author(s):  
Derek Strassheim ◽  
Timothy Sullivan ◽  
David C. Irwin ◽  
Evgenia Gerasimovskaya ◽  
Tim Lahm ◽  
...  

G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.


2013 ◽  
Vol 304 (4) ◽  
pp. H501-H513 ◽  
Author(s):  
Sarah Tonack ◽  
Cong Tang ◽  
Stefan Offermanns

During the last decade, several G protein-coupled receptors activated by endogenous metabolites have been described. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Receptors of endogenous metabolites are expressed in taste cells, the gastrointestinal tract, adipose tissue, endocrine glands, immune cells, or the kidney and are therefore in a position to sense food intake in the gastrointestinal tract or to link metabolite levels to the appropriate responses of metabolic organs. Some of the receptors appear to provide a link between metabolic and neuronal or immune functions. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Isabell Kaczmarek ◽  
Tomáš Suchý ◽  
Simone Prömel ◽  
Torsten Schöneberg ◽  
Ines Liebscher ◽  
...  

Abstract G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.


2019 ◽  
Vol 20 (6) ◽  
pp. 1402 ◽  
Author(s):  
Antonella Di Pizio ◽  
Maik Behrens ◽  
Dietmar Krautwurst

G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules.


2005 ◽  
Vol 10 (8) ◽  
pp. 765-779 ◽  
Author(s):  
Wayne R. Leifert ◽  
Amanda L. Aloia ◽  
Olgatina Bucco ◽  
Richard V. Glatz ◽  
Edward J. McMurchie

Signal transduction by G-protein-coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to activation of a genericmolecular switch involving heterotrimeric G-proteins and guanine nucleotides. Signal transduction has been studied extensively with both cell-based systems and assays comprising isolated signaling components. Interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, highthroughput screening, biosensors, and so on will focus greater attention on assay development to allow for miniaturization, ultra-high throughput and, eventually, microarray/biochip assay formats. Although cell-based assays are adequate for many GPCRs, it is likely that these formatswill limit the development of higher density GPCRassay platforms mandatory for other applications. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR assay platforms adaptable for such applications as microarrays. The authors review current cell-free GPCR assay technologies and molecular biological approaches for construction of novel, functional GPCR assays.


2006 ◽  
Vol 3 (4) ◽  
pp. 437-443 ◽  
Author(s):  
Raphael Rozenfeld ◽  
Fabien M. Décaillot ◽  
Adriaan P. IJzerman ◽  
Lakshmi A. Devi

Sign in / Sign up

Export Citation Format

Share Document