Effects of near-far acupuncture on neuronal function and expression of apoptosis-related protein Bax/Bcl-2/Cleaved caspase-3 in rats with ischemic stroke

2021 ◽  
Vol 45 (2) ◽  
pp. 73-86
Author(s):  
Wang Jian ◽  
Zhang Can ◽  
Yang Jun ◽  
Xing Liwei ◽  
Zhang Kun ◽  
...  

Objectives To explore the effects of electroacupuncture on nerve function in rats with ischemic stroke and its mechanism of anti-apoptosis. Methods A total of 80 SPF male SD rats were randomly divided into sham operation group, model group, sham electroacupuncture group, acupuncture group, electroacupuncture group and 16 rats in each group. The rat model of left ischemic stroke was prepared by suture embolization. In the sham group, the left common carotid artery was isolated only and no other treatment was given. In the electroacupuncture group, "Baihui" and "Mingmen" were selected for acupuncture, followed by dilatation wave, frequency 2Hz/100Hz, intensity 1mA, and electroacupuncture for 30min. The sham electroacupuncture group was the same as the electroacupuncture group in acupoint electroacupuncture group was the same as the electroacupuncture group in acupoint selection. The electroacupuncture group was only inserted subcutaneously and then connected with the electroacupuncture group without power supply, and fixed for 30 minutes. The electroacupuncture group and the acupuncture group received electroacupuncture treatment once, for a total of 14 days, 1d after modeling. The Improved Neurological Impairment scale (mNSS) was used to evaluate the degree of neurological impairment in each group after anesthesia and wakefulness. The percentage of cerebral infarction area was determined by TTC staining. HE staining and Nissl staining were used to observe the pathological changes of ischemic brain tissue. The level of apoptosis in ischemic brain tissue was detected by TUNEL assay. Western blot was used to detect protein expression of Bax, Bcl-2 and Cleaved caspase-3 in ischemic brain tissue. Results Compared with the sham operation group, neurological function score, percentage of cerebral infarction area and apoptosis level in the model group were significantly increased (all P < 0.01). Compared with the model group, neurological function score, percentage of cerebral infarction area and apoptosis index of acupuncture group and electroacupuncture group were decreased (all P <0.05). Compared with the model group, the expression levels of Bcl-2 protein in ischemic brain tissue of rats with ischemic stroke were up-regulated in the acupuncture group and electroacupuncture group to different degrees, while the expression levels of Bax and Cleaved caspase-3 protein were down-regulated in the electroacupuncture group. Conclusion Electroacupuncture may inhibit Bax, Cleaved caspase-3 and up-regulate the expression of Bcl-2 against neuronal apoptosis, thereby improving the neurological function injury of ischemic stroke rats.

2022 ◽  
Vol 66 (1) ◽  
Author(s):  
Rong Tian ◽  
Gengsheng Mao

The purpose of this study was to investigate the effect of Ghrelin on the polarization of microglia/ macrophages after cerebral ischemia (CI) in rats. 60 wild-type SD rats were randomly divided into sham group, CI group, CI+Ghrelin group, 20 rats in each group. The modified Longa suture method was used to establish the middle cerebral artery occlusion (MCAO) model in rats. Before surgery, Ghrelin was injected subcutaneously (100μg/kg, twice a day) for 4 consecutive weeks. After modeling, neurological function scores were performed with three behavioral experiments: mNSS score, Corner test, and Rotarod test, to evaluate the recovery of neurological function after Ghrelin treatment. At the same time, the brain tissues were collected and stained with 2,3,5-triphenyltetrazolium chloride (TTC) to detect the cerebral infarct volume. RT-qPCR was used to detect the expression of TNF-α and IL-1β in the ischemic brain tissue, and the TUNEL staining was used to detect the apoptosis of brain tissue. Flow cytometry was used to detect the percentage of M1 type microglia/macrophages which were isolated by trypsin digestion of fresh cerebral cortex. Then, the Western blotting and immunofluorescence method were used to detect the phosphorylation level of AKT (P-AKT) and AKT. Compared with the CI group, the neurological function of the rats in the CI+Ghrelin group was dramatically improved, and the cerebral infarction area was dramatically reduced. At the same time, the expression of TNF-α and IL-1β in the ischemic brain tissue of rats in the CI+Ghrelin group decreased, and the apoptotic cells in the brain tissue also decreased. Compared with the CI treatment group, the activation of M1 microglia/macrophages in the cortex of the ischemic side of the infarct and the peri-infarct area in the CI+Ghrelin group was dramatically inhibited. At the same time, the ratio of P-AKT/AKT of the brain tissue in the CI+Ghrelin group was dramatically higher than that of the CI group. In the rat cerebral ischemia model, Ghrelin can promote the repair of brain damage and the recovery of neurological function after ischemia. Its mechanism may be related to activating AKT to selectively reduce M1 microglia/macrophages, reducing inflammation and cell apoptosis in brain tissue.


2021 ◽  
Author(s):  
Gyllian B Yahn ◽  
Brandi Wasek ◽  
Teodoro Bottiglieri ◽  
Olga Malysheva ◽  
Marie A Caudill ◽  
...  

The majority of the population is growing older, in 2000, 10% of the total population of the world was over 60 years old and the proportion is projected to increase to 21% by 2050. Currently, ischemic stroke predominately affects the elderly. Nutrition is a modifiable risk factor for stroke, as people age their ability to absorb some nutrients decreases. A primary example is vitamin B12, most older adults are deficient in vitamin B12 because of changes in breakdown and absorption of the vitamin that take place during the aging process. Using a mouse model system, we investigated the role of vitamin B12 deficiency in ischemic stroke outcome and investigate mechanistic changes in ischemic versus non-ischemic brain tissue. At 10-weeks of age male and female C57Bl/6J mice were put on control or vitamin B12 deficient diets for 4-weeks prior to ischemic damage. At 14 weeks of age, we induced ischemic stroke in the sensorimotor cortex using the photothrombosis model. Animals were continued on diets for 4 weeks after damage. At 18 weeks of age, we assessed stroke outcome using the accelerating rotarod and forepaw placement tasks. After the collection of behavioral data, we euthanized animals and collected brain, blood, and liver tissues to assess histological and biochemical measurements. All animals maintained on the vitamin B12 deficient diet had increased levels of total homocysteine in plasma and liver tissue. Male and female mice maintained on a vitamin B12 deficient diet had impairments in balance and coordination on the accelerating rotarod compared to control diet animals after ischemic stroke. In ischemic brain tissue no difference between groups in lesion volume was observed. More neuronal survival was present in ischemic brain tissue of the vitamin B12 deficient group compared to controls. There were changes in choline metabolites in ischemic brain tissue as a result of diet and sex. In conclusion, the data presented in this study confirms that a vitamin B12 deficiency impacts motor function in older adult male and female mice after ischemic stroke. The mechanisms driving this change may be a result of neuronal survival and compensation in choline metabolism within the damaged brain tissue.


1993 ◽  
Vol 114 (1) ◽  
pp. 36-39 ◽  
Author(s):  
Ana M.Q.Vande Linde ◽  
Michael Chopp ◽  
Sue Ann Lee ◽  
Lonni R. Schultz ◽  
K.M.A. Welch

2020 ◽  
Vol 12 ◽  
Author(s):  
Joy Q. He ◽  
Eric S. Sussman ◽  
Gary K. Steinberg

Stroke is the leading cause of serious long-term disability, significantly reducing mobility in almost half of the affected patients aged 65 years and older. There are currently no proven neurorestorative treatments for chronic stroke. To address the complex problem of restoring function in ischemic brain tissue, stem cell transplantation-based therapies have emerged as potential restorative therapies. Aligning with the major cell types found within the ischemic brain, stem-cell-based clinical trials for ischemic stroke have fallen under three broad cell lineages: hematopoietic, mesenchymal, and neural. In this review article, we will discuss the scientific rationale for transplanting cells from each of these lineages and provide an overview of published and ongoing trials using this framework.


Stroke ◽  
2005 ◽  
Vol 36 (12) ◽  
pp. 2632-2636 ◽  
Author(s):  
Hakan Ay ◽  
Walter J. Koroshetz ◽  
Mark Vangel ◽  
Thomas Benner ◽  
Christopher Melinosky ◽  
...  

2021 ◽  
Author(s):  
Taiwei Dong ◽  
Nian Chen ◽  
Rong Ma ◽  
Qian Xie ◽  
Xiaoqing Guo ◽  
...  

Abstract Background: The current research progress suggests that a single therapy may not be ideal means for complex cerebral ischemic stoke (CIS). l-Borneolum is the crystallization of fresh leaves of Blumea balsamifera (L.) DC, we have found that l-borneolum plays a best anti-cerebral ischemic effect than d-borneolum or synthetic borneolum. However, the mechanism is needed to be explored in depth. Therefore, based on comprehensive approach that combines molecular docking technology and molecular biology, this stiudy aimed to investigate the potential mechanism of l-borneolum on CIS rats and provide scientific evidence for the treatment of l-borneolum in CIS.Methods: Cerebral ischemic stroke (CIS) rats with permanent middle cerebral artery occlusion (pMCAO) were applied to this study. The modified neurological severity scores (mNSS) and Longa neurological function scoring methods were used to assess the neurobehavioral scores. 2,3,5-Triphenyltetrazolium chloride (TTC) staining and hematoxylin-eosin (HE) staining were used to evaluate pathological changes of cerebral tissue. Ultrastructure of cortical capillary and blood-brain barrier (BBB) in rats were observed by transmission electron microscopy. In addition, the protein expression of Notch1, Dll4, Hey1, Hes1, Hes5, VEGFA and p65 in the cortex of rats were determined by Western blotting (WB). The protein contents of Caspase 3 in the cortex of rats were determined by immunohistochemical method (IHC). Results: l-Borneolum could prolong the resuscitation time, reduce the abnormal increased rectal temperature, improve neurological function in a dose-dependently. Additionally, l-borneolum could significantly alleviate brainstem edema and inflammation, as well as improve the ultrastructure of capillary and BBB in cortex. Moreover, 0.2 g/kg l-borneolum could substantially decrease the protein expressions of Dll4, Notch1, Hes1, Hes5, and VEGFA in the cortex while it decreased the level of Caspase-3 in the cortex of rats. Conclusions: l-Borneolum could repair neurological function by regulating Dll4/Notch1 signaling pathway, l-borneolum might be a good complementary agent for CIS.


Sign in / Sign up

Export Citation Format

Share Document