Analysis of in Vitro and in Vivo Characteristics of Human Embryonic Stem Cell-Derived Neural Precursors

2010 ◽  
Vol 19 (4) ◽  
pp. 471-486 ◽  
Author(s):  
Nataliya Kozubenko ◽  
Karolina Turnovcova ◽  
Miroslava Kapcalova ◽  
Olena Butenko ◽  
Miroslava Anderova ◽  
...  

During the last decade, much progress has been made in developing protocols for the differentiation of human embryonic stem cells (hESCs) into a neural phenotype. The appropriate agent for cell therapy is neural precursors (NPs). Here, we demonstrate the derivation of highly enriched and expandable populations of proliferating NPs from the CCTL14 line of hESCs. These NPs could differentiate in vitro into functionally active neurons, as confirmed by immunohistochemical staining and electrophysiological analysis. Neural cells differentiated in vitro from hESCs exhibit broad cellular heterogeneity with respect to developmental stage and lineage specification. To analyze the population of the derived NPs, we used fluorescence-activated cell sorting (FACS) and characterized the expression of several pluripotent and neural markers, such as Nanog, SSEA-4, SSEA-1, TRA-1-60, CD24, CD133, CD56 (NCAM), β-III-tubulin, NF70, nestin, CD271 (NGFR), CD29, CD73, and CD105 during long-term propagation. The analyzed cells were used for transplantation into the injured rodent brain; the tumorigenicity of the transplanted cells was apparently eliminated following long-term culture. These results complete the characterization of the CCTL14 line of hESCs and provide a framework for developing cell selection strategies for neural cell-based therapies.

2002 ◽  
Vol 22 (10) ◽  
pp. 3509-3517 ◽  
Author(s):  
Hitoshi Okada ◽  
Woong-Kyung Suh ◽  
Jianping Jin ◽  
Minna Woo ◽  
Chunying Du ◽  
...  

ABSTRACT The mitochondrial proapoptotic protein Smac/DIABLO has recently been shown to potentiate apoptosis by counteracting the antiapoptotic function of the inhibitor of apoptosis proteins (IAPs). In response to apoptotic stimuli, Smac is released into the cytosol and promotes caspase activation by binding to IAPs, thereby blocking their function. These observations have suggested that Smac is a new regulator of apoptosis. To better understand the physiological function of Smac in normal cells, we generated Smac-deficient (Smac−/− ) mice by using homologous recombination in embryonic stem (ES) cells. Smac−/− mice were viable, grew, and matured normally and did not show any histological abnormalities. Although the cleavage in vitro of procaspase-3 was inhibited in lysates of Smac−/− cells, all types of cultured Smac−/− cells tested responded normally to all apoptotic stimuli applied. There were also no detectable differences in Fas-mediated apoptosis in the liver in vivo. Our data strongly suggest the existence of a redundant molecule or molecules capable of compensating for a loss of Smac function.


1977 ◽  
Vol 146 (6) ◽  
pp. 1511-1520 ◽  
Author(s):  
S W Russell ◽  
W F Doe ◽  
A T McIntosh

The state in which macrophages (Mphi) from regressing Moloney sarcomas could kill tumor target cells was a highly labile one which decayed rapidly in vitro. Thereafter, regressor Mphi were noncytolytic. Mphi from several different progressing sarcomas failed to kill, even when challenged with target cells immediately after explantation. Similarly, thioglycollate-induced peritoneal Mphi (TG-Mphi) did not kill. Noncytolygic Mphi derived either from progressing sarcomas or from long-term (up to 96 h) cultures of regressor Mphi were exquisitely sensitive to stimulation by bacterial lipopolysaccharide (LPS); picogram/milliliter amounts induced killing. Similar concentrations of LPS had no demonstrable effect on TG-Mphi. Thus, tumor Mphi generally appeared to have been primed in vivo, with those in regressing sarcomas having additionally acquired cytolytic activity. Inability of progressor Mphi to kill apparently stemmed from lack of, or failure to respond to, the signal needed in vivo to trigger cytolytic activity, rather than the total absence of activation.


Author(s):  
Su-Chun Zhang ◽  
Xue-Jun Li ◽  
M Austin Johnson ◽  
Matthew T Pankratz

Cell therapy has been perceived as the main or ultimate goal of human embryonic stem (ES) cell research. Where are we now and how are we going to get there? There has been rapid success in devising in vitro protocols for differentiating human ES cells to neuroepithelial cells. Progress has also been made to guide these neural precursors further to more specialized neural cells such as spinal motor neurons and dopamine-producing neurons. However, some of the in vitro produced neuronal types such as dopamine neurons do not possess all the phenotypes of their in vivo counterparts, which may contribute to the limited success of these cells in repairing injured or diseased brain and spinal cord in animal models. Hence, efficient generation of neural subtypes with correct phenotypes remains a challenge, although major hurdles still lie ahead in applying the human ES cell-derived neural cells clinically. We propose that careful studies on neural differentiation from human ES cells may provide more immediate answers to clinically relevant problems, such as drug discovery, mechanisms of disease and stimulation of endogenous stem cells.


2010 ◽  
Vol 12 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Ivan Vassiliev ◽  
Svetlana Vassilieva ◽  
Luke F.S. Beebe ◽  
Sharon J. Harrison ◽  
Stephen M. McIlfatrick ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Li Zhang ◽  
Yenan Wu ◽  
Xiang Li ◽  
Shao Wei ◽  
Yiming Xing ◽  
...  

Chicken embryonic stem cells (cESCs) obtained from stage X embryos provide a novel model for the study of avian embryonic development. A new way to maintain cESCs for a long period in vitro still remains unexplored. We found that the cESCs showed stem cell-like properties in vitro for a long term with the support of DF-1 feeder and basic culture medium supplemented with human basic fibroblast growth factor (hbFGF), mouse stem cell factor (mSCF), and human leukemia inhibitory factor (hLIF). During the long culture period, the cESCs showed typical ES cell morphology and expressed primitive stem cell markers with a relatively stable proliferation rate and high telomerase activity. These cells also exhibited the capability to differentiate into cardiac myocytes, smooth muscle cells, neural cells, osteoblast, and adipocyte in vitro. Chimera chickens were produced by cESCs cultured for 25 passages with this new culture system. The experiments showed that DF-1 was the optimal feeder and hbFGF was an important factor for maintaining the pluripotency of cESCs in vitro.


2004 ◽  
Vol 45 (3) ◽  
pp. 1020 ◽  
Author(s):  
Masatoshi Haruta ◽  
Yoshiki Sasai ◽  
Hiroshi Kawasaki ◽  
Kaori Amemiya ◽  
Sotaro Ooto ◽  
...  

Blood ◽  
2006 ◽  
Vol 109 (2) ◽  
pp. 674-682 ◽  
Author(s):  
Charlotte V. Cox ◽  
Hannah M. Martin ◽  
Pamela R. Kearns ◽  
Paul Virgo ◽  
Roger S. Evely ◽  
...  

Abstract A significant proportion of children with T-cell acute lymphoblastic leukemia (T-ALL) continue to fail therapy. Consequently, characterization of the cells that proliferate to maintain the disease should provide valuable information on the most relevant therapeutic targets. We have used in vitro suspension culture (SC) and nonobese diabetic–severe combined immune deficient (NOD/SCID) mouse assays to phenotypically characterize and purify T-ALL progenitor cells. Cells from 13 pediatric cases were maintained in vitro for at least 4 weeks and expanded in 8 cases. To characterize the progenitors, cells were sorted for expression of CD34 and CD4 or CD7 and the subfractions were evaluated in vitro and in vivo. The majority of cells capable of long-term proliferation in vitro were derived from the CD34+/CD4− and CD34+/CD7− subfractions. Moreover, the CD34+/CD4− or CD7− cells were the only subfractions capable of NOD/SCID engraftment. These T-ALL cells successfully repopulated secondary and tertiary recipients with equivalent levels of engraftment, demonstrating self-renewal ability. The immunophenotype and genotype of the original leukemia cells were preserved with serial passage in the NOD/SCID mice. These data demonstrate the long-term repopulating ability of the CD34+/CD4− and CD34+/CD7− subfractions in T-ALL and suggest that a cell with a more primitive phenotype was the target for leukemic transformation in these cases.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Khodadad Khodadadi ◽  
Huseyin Sumer ◽  
Maryam Pashaiasl ◽  
Susan Lim ◽  
Mark Williamson ◽  
...  

Despite tremendous efforts on isolation of pluripotent equine embryonic stem (ES) cells, to date there are few reports about successful isolation of ESCs and no report ofin vivodifferentiation of this important companion species. We report the induction of pluripotency in adult equine fibroblasts via retroviral transduction with three transcription factors usingOCT4, SOX2, andKLF4in the absence of c-MYC. The cell lines were maintained beyond 27 passages (more than 11 months) and characterized. The equine iPS (EiPS) cells stained positive for alkaline phosphatase by histochemical staining and expressed OCT4, NANOG, SSEA1, and SSEA4. Gene expression analysis of the cells showed the expression ofOCT4, SOX2 NANOG, andSTAT3. The cell lines retained a euploid chromosome count of 64 after long-term culture cryopreservation. The EiPS demonstrated differentiation capacity for the three embryonic germ layers bothin vitroby embryoid bodies (EBs) formation andin vivoby teratoma formation. In conclusion, we report the derivation of iPS cells from equine adult fibroblasts and long-term maintenance using either of the three reprogramming factors.


Sign in / Sign up

Export Citation Format

Share Document